The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).
If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.
Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.
BibTex Citation Data :
@article{JOIV431, author = {Cahyo Hartanto and Laksmita Rahadianti}, title = {Single Image Dehazing Using Deep Learning}, journal = {JOIV : International Journal on Informatics Visualization}, volume = {5}, number = {1}, year = {2021}, keywords = {Single image dehazing; deep learning; image restoration; image quality assessment.}, abstract = {Many real-world situations such as bad weather may result in hazy environments. Images captured in these hazy conditions will have low image quality due to microparticles in the air. The microparticles light to scatter and absorb, resulting in hazy images with various effects. In recent years, image dehazing has been researched in depth to handle images captured in these conditions. Various methods were developed, from traditional methods to deep learning methods. Traditional methods focus more on the use of statistical prior. These statistical prior have weaknesses in certain conditions. This paper proposes a novel architecture based on PDR-Net by using a pyramid dilated convolution and pre-processing modules, processing modules, post-processing modules, and attention applications. The proposed network is trained to minimize L1 loss and perceptual loss with the O-Haze dataset. To evaluate our architecture's result, we used structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and color difference as an objective assessment and psychovisual experiment as a subjective assessment. Our architecture obtained better results than the previous method using the O-Haze dataset with an SSIM of 0.798, a PSNR of 25.39, but not better on the color difference. The SSIM and PSNR results were strengthened by using subjective assessments and 65 respondents, most of whom chose the results of the restoration of the image produced by our architecture.}, issn = {2549-9904}, pages = {76--82}, doi = {10.30630/joiv.5.1.431}, url = {http://joiv.org/index.php/joiv/article/view/431} }
Refworks Citation Data :
@article{{JOIV}{431}, author = {Hartanto, C., Rahadianti, L.}, title = {Single Image Dehazing Using Deep Learning}, journal = {JOIV : International Journal on Informatics Visualization}, volume = {5}, number = {1}, year = {2021}, doi = {10.30630/joiv.5.1.431}, url = {} }Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
__________________________________________________________________________
JOIV : International Journal on Informatics Visualization
ISSN 2549-9610 (print) | 2549-9904 (online)
Organized by Department of Information Technology - Politeknik Negeri Padang, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W : http://joiv.org
E : joiv@pnp.ac.id, hidra@pnp.ac.id, rahmat@pnp.ac.id
View JOIV Stats
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.