Adaptive Neural Fuzzy Inference System and Automatic Clustering for Earthquake Prediction in Indonesia
DOI: http://dx.doi.org/10.30630/joiv.3.1.204
Abstract
Keywords
Full Text:
PDFReferences
Georgoulas, G. A. Konstantaras, E. Katsifarakis, C.D. Stylios, E. Maravelakis, and G.J.Vachtsevanos. “ Seismic-mass density-based algorithm for spatio-temporal clustering”, Expert Systems with Applications 40 41834189, 2013.
Alvarez, R.,J.,C. Echeverria, A. Ortiz-Cruz, and E. Hernandez. “Temporal and spatial variations of seismicity scaling behavior in Southern México”. Journal of Geodynamics 54, 2012, pp. 1-12.
AlesS., and Jirí Vanek., “Earthquake clustering in the tectonic pattern and volcanism of the Andaman Sea region”. Tectonophysics 608, 2013, pp. 728-736.
M. N. Shodiq, D. H. Kusuma, M.G. Rifqi., A.R. Barakbah, A.R., T. Harsono, “Spatial Analisys of Magnitude Distribution for Earthquake Prediction using Neural Network Based On Automatic Clustering in Indonesia”, International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC). 2017-IEEE co-sponsored conference, September 26-27, 2017, Surabaya, Indonesia
Yuen, D.A., Dzwinel, W., Ben-Zion, Y., Kadlecd, B. “Visualization of Earthquake Clusters over Multidimensional Space”. Encyclopedia of Complexity and Systems Science. 2009, pp 2347-2371
Dzwinel, W. Yuen, D. Kaneko, Y. Boryczko, K. Ben-Zion, K. “ Multi-resolution clustering analysis and 3-D visualization of multitudinous synthetic earthquakes”. Vis Geosci (2003) 8: 12–25
M .N. Shodiq, A.R. Barakbah, T. Harsono, “Spatial analysis of earthquake distribution with automatic clustering for prediction of earthquake seismicity in Indonesia”. KCIC2015, 2015.
R. Console, M. Murru, F. Catalli. “Physical and stochastic models of earthquake clustering”. Tectonophysics 417 141–153, 2006.
E.I. Alves, “ Earthquake forecasting using neural networks: results future work”, Nonlinear Dynamics 44 (1–4), 2006, pp.341–349.
H. Adelli and K. Panakkat. “A probabilistic neural network for earthquake magnitude prediction”. Neural Network 22, 2009, pp. 1018-1024.
J. Reyes, A. Morales-Esteban, and F.Martínez-Álvarez, “Neural networks to predict earthquakes in Chile”, AppliedSoftComputing13, 2013, pp.1314–1328.
M. Mirrashid. “Earthquake magnitude prediction by adaptive neurofuzzy inference system (ANFIS) based on fuzzy C-means algorithm”. Nat Hazards. 2014. DOI 10.1007/s11069-014-1264-7
M. Mirrashid, M. Givehchi, M. Miri, R. Madandoust. “Performance Investigation Of Neuro-Fuzzy System For Earthquake Prediction “. Asian Journal Of Civil Engineering (BHRC) VOL. 17, NO. 2 (2016) pp. 213-223
M. Shibli. “A Novel Approach to Predict Earthquakes using Adaptive Neural Fuzzy Inference System and Conservation of Energy-Angular Momentum”. International Journal of Computer Information Systems and Industrial Management Applications. ISSN 2150-7988 Volume 3 (2011) pp. 371-390
A. Zamani, M. R. Sorbi, A. A. Safavi. “Application of neural network and ANFIS model for earthquake occurrence in Iran”. Earth Sci Inform. DOI 10.1007/s12145-013-0112-8
A. R. Barakbah and K. Arai, “Centronit:initial centroid designation algoritm for K-Means clustering”. EMITTER International journal of engineering technology”, Vol.02, No.01, 2014.
A. Morales-Esteban, F. Martínez-Álvarez, S. Scitovski, R. Scitovski., “A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning”. Computers & Geosciences 73,2014, pp.132-141
A.R. Barakbah and K. Arai, “ Determining constraints of moving variance to find global optimum and make automatic clustering”, IES, Politeknik Elektronika Negeri Surabaya, Surabaya, 2004.
A.R. Barakbah and K. Arai, “ Reserved pattern of moving variance for accelerating automatic clustering”, EEPIS Journal, Vol. 2, No.9 , 2004, pp.15-21.
A. Morales-Esteban, F. Martínez-Álvarez, J. Reyes. “Earthquake prediction in seismogenic areas of the Iberian Peninsula based oncomputational intelligence”. Tectonophysics 593, 2013, pp. 121–134
A.R. Barakbah, T. Harsono, A. Sudarsono, R. A. Aliefyan. “Big Data Analysis for Spatio-Temporal Earthquake Risk- Mapping System in Indonesia with Automatic Clustering”. ICBDR 2017, October 22–24, 2017, Osaka, Japan.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
__________________________________________________________________________
JOIV : International Journal on Informatics Visualization
ISSN 2549-9610 (print) | 2549-9904 (online)
Organized by Department of Information Technology - Politeknik Negeri Padang, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W : http://joiv.org
E : joiv@pnp.ac.id, hidra@pnp.ac.id, rahmat@pnp.ac.id
View JOIV Stats
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.