Detection of Soil Water Content Using Continuous Wave Ground Penetrating Radar

Sonal Oimbe - TE Connectivity Ltd, Pune, India
Rahul Ingle - Veermata Jijabai Technological Institute (VJTI), Mumbai, India.
Raval Awale - Veermata Jijabai Technological Institute (VJTI), Mumbai, India.

Citation Format:



In this work, continuous wave ground-penetrating radar (CW-GPR) has been used for detecting the soil water content in context to farm management. It is here speculated that CW-GPR utilized to observe variations in Soil parameters in different geographical area where traditional methods fails such as reflection-based GPR method. An experiment was performed on different farms in and around Mumbai city locality in a 20 * 14 m section of natural grassland at the SAMEER- IIT BOMBAY Research Facility in Mumbai city, INDIA. Two survey methods such as velocity analysis and GPR reflection surveys of ground wave were inefficient at the experiment site due to the signal attenuation which is related with the clay-rich soil. CW-GPR data sets were collected on regular and daily basis during a 5-d period in February 2017. The samples of soil were collected for analysis purpose from the mentioned geographical area. The clear response has been observed for early time signal amplitude to changes in soil water content using CW-GPR data. The strong correlation has been observed between the GPR data sets with Soil water content, which is uniform with the CW-GPR dependence on relative permittivity. The outcome reveals that the CW-GPR method can be utilized to acquire spatially distributed information on subsurface moisture content in clay-rich soils.


Continuous Wave Ground Penetrating Radar (CW-GPR); Time Domain Reflectometry (TDR); Soil Water Content (SWC); average envelope amplitude (AEA).

Full Text:



Annan, A.P. 1973. Radio interferometry depth sounding: I. Theoretical discussion. Geophysics 38:557–580. doi:10.1190/1.1440360.

Cassiani, G., C. Strabbia, and L. Gallotti. 2004. Vertical radar profiles for the characterization of deep vadose zones. Vadose Zone J. 3:1093– 1105. doi:10.2113/3.4.1093.

Comite, D., A. Galli, S.E. Lauro, E. Mattei, and E. Pettinelli. 2016. Analysis of GPR early-time signal features for the evaluation of soil permittivity through numerical and experimental surveys. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1):178–187. doi:10.1109/JSTARS.2015.2466174.

Davis, J.L., and A.P. Annan. 1989. Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophys. Prospect.37:531–551. doi:10.1111/j.1365-2478.1989.tb02221.x.

Attributes to estimate soil dielectric permittivity: A theoretical study. IEEE Trans. Geosci. Remote Sens. 51:1643–1654. doi:10.1109/TGRS.2012.2206817.

Ferrara, C., P.M. Barone, C.M. Steelman, E. Pettinelli, and A.I. Endres. 2013.Monitoring shallow soil water content under natural field conditions using the early-time GPR signal technique. Vadose Zone J. 12(4). doi:10.2136/vzj2012.0202.

Franz, T.E., M. Zreda, R. Rosolem, and T.P.A. Ferre. 2013. A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrol. Earth Syst. Sci. 17:453–460. doi:10.5194/hess-17-453-2013.

Galagedara, L.W., G.W. Parkin, and J.D. Redman. 2003. An analysis of the ground-penetrating radar direct ground wave method for soil water content measurement. Hydrol. Processes 17:3615–3628. doi:10.1002/hyp.1351.

Gerhards, H., U. Wollschläger, Q. Yu, P. Schiwek, X. Pan, and K. Roth. 2008. Continuous and simultaneous measurement of reflector depth and average soil-water content with multichannel ground-penetrating radar. Geophysics 73:J15–J23. doi:10.1190/1.2943669.

Grote, K., S. Hubbard, and Y. Rubin. 2003. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques. Water Resour. Res. 39:1321. doi:10.1029/2003WR002045.

Hislop, G. 2015. Permittivity estimation using coupling of commercial ground penetrating radars. IEEE Trans. Geosci. Remote Sens. 53:4157– 4164. doi:10.1109/TGRS.2015.2392110.

Huisman, J.A., S.S. Hubbard, J.D. Redman, and A.P. Annan. 2003. Measuring soil water content with ground penetrating radar. Vadose Zone J. 2:476–491. doi:10.2136/vzj2003.4760.

Huisman, J.A., C. Sperl, W. Bouten, J.M., Verstraten. 2001. Soil water content measurements at different scales: Accuracy of time domain reflectometry and ground-penetrating radar. J. Hydrol. 245:48–58. doi:10.1016/S0022-1694(01)00336-5.

Karan, M., M. Liddell, S.M. Prober, S. Arndt, J. Beringer, M. Boer, et al. 2016. The Australia SuperSite Network: A continental, long-term terrestrial ecosystem observatory. Sci. Total Environ. 568:1263–1274. doi:10.1016/j.scitotenv.2016.05.170.

Kerr, Y.H., P. Waldteufel, J.P. Wigneron, S. Delwart, F. Cabot, J. Boutin,et al. 2010. The SMOS Mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 98:666–687.doi:10.1109/JPROC.2010.2043032.

Klute, A. 1965. Laboratory measurement of hydraulic conductivity of saturated soil. In: C.A. Black et al., editor, Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling. Agron. Monogr. 9. ASA, Madison,WI.p.210–221.doi:10.2134/agronmonogr9.1.c13.

Lunt, I.A., S.S. Hubbard, and Y. Rubin. 2005. Soil moisture content estimation using ground-penetrating radar reflection data. J. Hydrol.307:254–269. doi:10.1016/j.jhydrol.2004.10.014.

Pettinelli, E., A. Di Matteo, S.E. Beaubien, E. Mattei, S.E. Lauro, A. Galli,and G. Vannaroni. 2014. A controlled experiment to investigate the correlation between early-time signal attributes of ground-coupled radar and soil dielectric properties. J. Appl. Geophys. 101:68–76.doi:10.1016/j.jappgeo.2013.11.012.

Pettinelli, E., G. Vannaroni, B. Di Pasquo, E. Mattei, A. Di Matteo, A. De Santis, and A.P. Annan. 2007. Correlation between near-surface electromagnetic soil parameters and early-time GPR signals: An experimental study. Geophysics 72:A25–A28. doi:10.1190/1.2435171.

Robinson, D.A., C.S. Campbell, J.W. Hopmans, B.K. Hornbuckle, S.B. Jones,R. Knight, et al. 2008. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 7:358–389. doi:10.2136/vzj2007.0143.

Rucker, D.F. 2011. Inverse upscaling of hydraulic parameters during constant flux infiltration using borehole radar. Adv. Water Resour. 34:215–226. doi:10.1016/j.advwatres.2010.11.001.

Taner, M.T., F. Koehler, and R.E. Sheriff. 1979. Complex seismic trace analysis. Geophysics 44:1041–1063. doi:10.1190/1.1440994.

Van Dam, R.L. 2014. Calibration functions for estimating soil moisture from GPR dielectric constant measurements. Commun. Soil Sci. Plant Anal.45:392–413. doi:10.1080/00103624.2013.854805.

Van Dam, R.L., and W. Schlager. 2000. Identifying causes of groundpenetrating radar reflections using time-domain reflectometry and sedimentological analyses. Sedimentology 47:435–449.doi:10.1046/j.1365-3091.2000.00304.x.

van Overmeeren, R.A., S.V. Sariowan, and J.C. Gehrels. 1997. Ground penetrating radar for determining volumetric soil water content: Results of comparative measurements at two test sites. J. Hydrology 197:316–338. doi:10.1016/S0022-1694(96)03244-1.

Vereecken, H., J.A. Huisman, H. Bogena, J. Vanderborght, J.A. Vrugt, and J.W. Hopmans. 2008. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 44:W00D06. doi:10.1029/2008WR006829.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JOIV : International Journal on Informatics Visualization
ISSN 2549-9610  (print) | 2549-9904 (online)
Organized by Department of Information Technology - Politeknik Negeri Padang, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W :
E :,,

View JOIV Stats

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.