Human Bone Age Estimation of Carpal Bone X-Ray Using Residual Network with Batch Normalization Classification

Anisah Nabilah - Politeknik Elektronika Negeri Surabaya, Surabaya ,60111, Indonesia
Riyanto Sigit - Politeknik Elektronika Negeri Surabaya, Surabaya ,60111, Indonesia
Arna Fariza - Politeknik Elektronika Negeri Surabaya, Surabaya ,60111, Indonesia
Madyono Madyono - Politeknik Elektronika Negeri Surabaya, Surabaya ,60111, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.30630/joiv.7.1.1024

Abstract


Bone age is an index used by pediatric radiology and endocrinology departments worldwide to define skeletal maturity for medical and non-medical purposes. In general, the clinical method for bone age assessment (BAA) is based on examining the visual ossification of individual bones in the left hand and then comparing it with a standard radiographic atlas of the hand. However, this method is highly dependent on the experience and conditions of the forensic expert. This paper proposes a new approach to age estimation of human bone based on the carpal bones in the hand and using a residual network architecture. The classification layer was modified with batch normalization to optimize the training process. Before carrying out the training process, we performed an image augmentation technique to make the dataset more varied. The following augmentation techniques were used: resizing; random affine transformation; horizontal flipping; adjusting brightness, contrast, saturation, and hue; and image inversion. The output is the classification of bone age in the range of 1 to 19 years. The results obtained when using a VGG16 model were an MAE value of 5.19 and an R2 value of 0.56 while using the newly developed ResNeXt50(32x4d) model produced an MAE value of 4.75 and an R2 value of 0.63. The research results indicate that the proposed modification of the residual training model improved classification compared to using the VGG16 model, as indicated by an MAE value of 4.75 and an R2 value of 0.63.


Keywords


Forensics; carpal bone; convolution neural network; bone age; batch normalization.

Full Text:

PDF

References


I. Alfredo, “Bab 1 pendahuluan,†Pelayanan Kesehat., no. 2014, pp. 1–6, 2010, [Online]. Available: http://library.oum.edu.my/repository/725/2/Chapter_1.pdf

C. Spampinato, S. Palazzo, D. Giordano, M. Aldinucci, and R. Leonardi, “Deep learning for automated skeletal bone age assessment in X-ray images,†Med. Image Anal., vol. 36, pp. 41–51, 2017, doi: 10.1016/j.media.2016.10.010.

V. Gilsanz and O. Ratib, Hand Bone Age Bone Development. 2012. [Online]. Available: http://link.springer.com/10.1007/978-3-642-23762-1

D. S. D. C, “Skeletal Bone Age Analysis Using Emroi Technique,†IOSR J. Comput. Eng., vol. 12, no. 3, pp. 06–13, 2013, doi: 10.9790/0661-1230613.

E. Reynolds, “Radiographic atlas of skeletal development of the hand and wrist. By W. W. Greulich and S. I. Pyle. Stanford University Press, 1950, xiii + 190 pp., ($10.00),†Am. J. Phys. Anthropol., vol. 8, no. 4, pp. 518–520, 1950, doi: 10.1002/ajpa.1330080429.

G. Beunen, J. Lefevre, M. Ostyn, R. Renson, J. Simons, and D. Van Gerven, “Skeletal maturity in Belgian youths assessed by the Tanner-Whitehouse method (TW2),†Ann. Hum. Biol., vol. 17, no. 5, pp. 355–376, 1990, doi: 10.1080/03014469000001142.

A. A. Aung and Z. M. Win, “Computer Assisted Bone Age Estimation of Children Using Middle Finger and Carpal Bones,†Int. J. Intell. Eng. Syst., vol. 14, no. 3, pp. 119–127, 2021, doi: 10.22266/ijies2021.0630.11.

D. Giordano, C. Spampinato, G. Scarciofalo, and R. Leonardi, “An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones,†IEEE Trans. Instrum. Meas., vol. 59, no. 10, pp. 2539–2553, 2010, doi: 10.1109/TIM.2010.2058210.

M. Marouf, R. Siddiqi, F. Bashir, and B. Vohra, “Automated Hand X-Ray Based Gender Classification and Bone Age Assessment Using Convolutional Neural Network,†2020 3rd Int. Conf. Comput. Math. Eng. Technol. Idea to Innov. Build. Knowl. Econ. iCoMET 2020, 2020, doi: 10.1109/iCoMET48670.2020.9073878.

T. Van Steenkiste et al., “Automated Assessment of Bone Age Using Deep Learning and Gaussian Process Regression,†pp. 674–677, 2018.

S. R. Bulo, L. Porzi, and P. Kontschieder, “In-place Activated BatchNorm for Memory-Optimized Training of DNNs,†Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 5639–5647, 2018, doi: 10.1109/CVPR.2018.00591.

F. Cavallo, A. Mohn, F. Chiarelli, and C. Giannini, “Evaluation of Bone Age in Children: A Mini-Review,†Front. Pediatr., vol. 9, no. March, pp. 5–8, 2021, doi: 10.3389/fped.2021.580314.

K. Al-Khater et al., “Time of appearance of ossification centers in carpal bones. A radiological retrospective study on Saudi children,†Saudi Med. J., vol. 41, pp. 938–946, 2020, doi: 10.15537/smj.2020.9.25348.

A. M. Richard Drake, A. Wayne Vogl, Gray’s Anatomy for Students. Elsevier, 2019. [Online]. Available: https://www.elsevier.com/books/grays-anatomy-for-students/drake/978-0-323-39304-1

V. De Sanctis, S. Di Maio, A. Soliman, G. Raiola, R. Elalaily, and G. Millimaggi, “Hand X-ray in pediatric endocrinology: Skeletal age assessment and beyond,†Indian J. Endocrinol. Metab., vol. 18, no. November, pp. S63–S71, 2014, doi: 10.4103/2230-8210.145076.

S. J. Son et al., “TW3-Based Fully Automated Bone Age Assessment System Using Deep Neural Networks,†IEEE Access, vol. 7, no. c, pp. 33346–33358, 2019, doi: 10.1109/ACCESS.2019.2903131.

D. Štern, C. Payer, N. Giuliani, and M. Urschler, “Automatic Age Estimation and Majority Age Classification from Multi-Factorial MRI Data,†IEEE J. Biomed. Heal. Informatics, vol. 23, no. 4, pp. 1392–1403, 2019, doi: 10.1109/JBHI.2018.2869606.

E. Chai, M. Pilanci, and B. Murmann, “Separating the Effects of Batch Normalization on CNN Training Speed and Stability Using Classical Adaptive Filter Theory,†in 2020 54th Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 1214–1221. doi: 10.1109/IEEECONF51394.2020.9443275.

S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,†Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 5987–5995, 2017, doi: 10.1109/CVPR.2017.634.

S. S. Halabi et al., “The RSNA Pediatric Bone Age Machine Learning Challenge.,†Radiology, vol. 290, no. 2, pp. 498–503, Feb. 2019, doi: 10.1148/radiol.2018180736.

J. Zhou, Z. Li, W. Zhi, B. Liang, D. Moses, and L. Dawes, “Using Convolutional Neural Networks and Transfer Learning for Bone Age Classification,†pp. 0–5, 2017.

S. Nadeemhashmi, H. Gupta, D. Mittal, K. Kumar, A. Nanda, and S. Gupta, “A Lip Reading Model Using CNN with Batch Normalization,†2018 11th Int. Conf. Contemp. Comput. IC3 2018, pp. 2–4, 2018, doi: 10.1109/IC3.2018.8530509.

I. Fibriani, Widjonarko, A. Prasetyo, A. M. Raharjo, and D. E. Irawan, “Multi Deep Learning to Diagnose COVID-19 in Lung X-Ray Images with Majority Vote Technique,†Int. J. Intell. Eng. Syst., vol. 13, no. 6, pp. 560–568, 2020, doi: 10.22266/ijies2020.1231.49.

P. H. Radiographs, D. B. Larson, M. C. Chen, M. P. Lungren, N. V Stence, and C. P. Langlotz, “Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on,†vol. 287, no. 1, pp. 1–10, 2018.

S. A. Adeshina, C. Lindner, and T. F. Cootes, “Automatic segmentation of carpal area bones with random forest regression voting for estimating skeletal maturity in infants,†in 2014 11th International Conference on Electronics, Computer and Computation (ICECCO), 2014, pp. 1–4. doi: 10.1109/ICECCO.2014.6997559.