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Abstract— Bitcoin is a decentralized digital currency that enables people to exchange value without requiring a third-party 

intermediary. Due to its many advantages, it has received much interest from institutional and individual investors. Despite its meteoric 

increase, the price of Bitcoin is an extremely volatile asset class as it purely relies on supply and demand. This presents an interesting 

opportunity to create a forecasting model. However, many research papers in this area do not analyze the residuals as part of the 

forecasting resulting in potentially biased models. In this paper, we demonstrate System Identification (SI) residual analysis techniques 

for the analysis of our forecasting model. The Multi-Layer Perceptron (MLP) Nonlinear Autoregressive with Exogeneous Inputs 

(NARX) uses historical price data and several technical indicators to predict the future price movements of Bitcoin. The Particle Swarm 

Optimization (PSO) algorithm was used to find optimal parameters for the model. The model was able to predict one-day price in the 

prediction test. The model has successfully captured the dynamics of the data through the tests performed on residuals. It also proves 

the randomness of residuals, albeit with some minor violations.  
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I. INTRODUCTION 

First introduced in 1991 by individuals or individuals 

working under the pseudonym Satoshi Nakamoto, Bitcoin is 

a decentralized digital currency that enables people to 

exchange value without requiring a third-party intermediary 

[1], [2]. The blockchain technology behind Bitcoin is a 

publicly distributed ledger containing a series of data blocks 

linked together and protected using cryptographic hash 

(mathematically calculated digital fingerprints unique to the 

data). Any changes made to the data alter the hash. Because 

the previous block's hash is included in the new block, any 

changes to the blockchain can be detected and rejected 

through peer-to-peer consensus of specialized computers that 
store a copy of the blockchain. Among Bitcoin's advantages 

are anonymity, security, and traceability [3]–[6]. 

Investors and speculators around the world trade more than 

6,000 cryptocurrencies with a value of USD 2.3 trillion in the 

relatively young and constantly open cryptocurrency market 

[7], [8]. Due to the absence of agreed-upon fundamentals to 

back up Bitcoin's price and pure supply and demand nature 

[9], [10], its valuation has often been described as highly 

volatile and uncertain [5], [7], [11]–[14]. The price is highly 

influenced by sentiment and exposure to the public and 

traditional/social media coverage [15], [16].  
Financial market forecasting methods can be divided into 

fundamental (examination of past performance causes for 

price movement) and technical analysis (examination of price 

movements purely on its market value and historical 

standpoint) [10], [17]. Furthermore, there are two distinct 

schools of thought in forecasting financial markets in data 

representation. The economist model argues that market data 

is linear, while soft computing methods prefer non-linear 

models to represent data considered to be non-linear, 

complex, and dynamic [18]. The increase in popularity of 

Bitcoin and other cryptocurrencies, together with their 
unusual nature of the market and potential profits, has led to 

much research interest [6], [11], [16]. Two main approaches 

emerge: one tries to characterize the pricing model based on 
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sentiment [15], [16], while others try to model the price based 

on fundamental and technical analysis.  

AI-based methods tend to treat the data as non-linear and 

combine both fundamental and technical analysis in their 

predictions [10]. Additionally, these methods have been 

proven versatile and successful in problems with unknown or 

chaotic patterns and high noise as they relax the requirements 

of formal definition or probability distribution of the data [10], 

[12]. Among the AI-based methods, RNN and LSTM have 

been predominantly used in Bitcoin price prediction. RNNs 

(such as LSTM) excel in time-series forecasting due to their 
ability to mimic biological memory and efficiently capture 

relationships between temporal-related data [14]. This 

network class combines previous and present input/output 

data as inputs to predict future values. This is done through a 

series of unique gates that control information flow in the 

network [17].  

LSTM [17] was used to forecast Bitcoin price movements 

based on order book data. 160,000 data were separated into 

80:20 training ratios and used to train the LSTM to output 

three price predictions: up, down, or stationary. Trading 

strategies based on LSTM predictions were simulated with 
modest returns. In Barry and Crane [13], motifs were used to 

assist an LSTM network in predicting Bitcoin prices. Motifs 

are repeating sub-sequences present in a time-series dataset. 

The patterns were used to set the initial conditions for LSTM 

training. The method suggests that the use of motifs to 

initialize LSTM networks greatly improved prediction 

accuracy (reduction of 8% RMSE). A comparison between 

CNN and LSTM for Bitcoin price prediction was performed 

by Misnik et al. [14]. The CNN method was unique as it used 

price chart images as the input. The LSTM was trained with 

five inputs (price, coefficient of relative change, and three 
harmonic component ranges). LSTM was found to be superior 

to CNN, with a statistically significant F-test value. 

Other various statistical and AI-based methods reported 

were GARCH [9], Random Forest (RF) [7], Decision Tree 

Regressor (DTR) [11], and KNN [11]. Bitcoin mining 

information was used to predict Bitcoin returns [9]. 

Information such as hash rate, mining difficulty, and block 

size to determine future Bitcoin prices. Simulations on the 

GARCH-M model suggest that mining difficulty and block 

size were inversely proportionate to Bitcoin price. In 

Alahmari [11], the Decision Tree Regressor and KNN non-

linear algorithms were used to forecast the closing prices of 
Bitcoin, Ripple, and Ethereum. Hourly data were collected 

over a span of five to seven years, divided into an 80:20 

percent training-testing ratio, and modeled using DTR and 

KNN. DTR was selected as the best-performing algorithm 

with above 90% R-squared fit. Avoird [7] used a combination 

of technical indicators and historical prices as features for an 

RF-based price predictor. The TI hyperparameters were 

optimized using Random Search in AutoML. Simulated 

trading was done over short and long-time intervals. The 

algorithm yielded 54.54% - 60.23% accuracy. Similarly, 

Indera et al. [19] used moving average indicators to assist a 
NARX model predictor of Bitcoin price. NARX parameters, 

such as input lag, output lag, hidden layer size, and Mersenne-

Twister (MT) random seed, were optimized using PSO. 

Avoird [7] and Indera et al. [19] have used technical indicators 

to improve prediction accuracy. 

Sentiment-based approaches have also been reported. Yang 

[16] analyzed the correlation of Bitcoin price to sentiment 

based on news media frequency. Related articles from two 

major newspapers were analyzed and compared to Bitcoin 

prices at the time of publication. The research discovered that 

any coverage (regardless of positive or negative news) related 

to Bitcoin positively influenced investment returns, with 

positive news having twice the impact compared to negative 

ones. Similarly, McCoy and Rahimi [15] discovered 

Thanews, and Twitter volume is highly correlated with 

Bitcoin market sentiment, and these sources can yield 
considerable profits if included as a trading strategy. 

A. Problem Statement and Proposed Work 

Salient points from the literature suggest that Bitcoin price 

prediction has been extensively studied and modeled. 

However, many of these works did not examine model bias in 

their prediction works (see [6], [7], [11]–[14], [20] for 

examples). Regression models should rely on residuals 

analysis to check model assumptions and prevent deviations. 
Model bias occurs when the predictor does not fully represent 

the behavior of the system under study. When the difference 

between the actual and predicted system is compared, the 

residuals are not stochastic (random) in nature. The theory 

behind this is that if a model is deterministic, then its 

predictive power (coefficients) should fully explain the 

dependent variable in the model, leaving only noise behind. 

However, if the residuals are not consistent with random 

error, the dependence of the variable should not be significant, 

and the model's regression coefficients cannot be trusted.  

In this paper, we apply the fundamentals of System 

Identification (SI), a control engineering discipline to the 
Bitcoin price prediction problem. SI is concerned with 

representing systems in mathematical models. Methods in SI 

emphasize the randomness of the residuals as part of model 

validation to ensure that the model is valid and acceptable. 

The model selected is the MLP-NARX model, a shallow 

neural network structured to accept recurrent connections 

from past inputs and outputs to assist in the prediction of 

future outputs. 

Additionally, we extend the works of Indera et al. [19] to 

include several common technical indicators (Moving 

Average (MA), Relative Strength Index (RSI), and Bollinger 
Bands (BB)) as input to the MLP-NARX to assist in the 

prediction. Another contribution is the use of PSO to optimize 

the MLP-NARX parameters, such as input lag, output lag, 

hidden layer size, MT random seed, and the technical 

indicator windows. We believe that the automated methods 

presented here would greatly simplify the search for the best 

prediction model for this task.  

II. MATERIAL AND METHOD 

This research presents the structure of experiments carried 

out in this paper. It begins with a description of the hardware 

and software used, followed by a description of the 

experiments. The SI model validation is divided into model 

fit and residual tests. In Figure 1, the corresponding objectives 

pertaining to the experiments are also highlighted. 
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Fig. 1  Experiment flowchart 

A. Hardware and Software Used 

The computer specifications used for this experiment are 

shown in Table 1. 

TABLE I 
HARDWARE AND SOFTWARE SPECIFICATIONS 

Item Specification 

Central Processing Unit 

(CPU) 

AMD Threadripper 3990X 

Random Access Memory 
(RAM) 

64 GB DDR4 RAM 

GPU NVidia GTX1080 Ti 
MATLAB Version Release 2021a 

B. Experiment Description 

The experiment begins with data collection and 

construction of technical indicators and the MLP-NARX 

model, followed by parameter optimization using PSO and 

model validation. 

1)  Data Collection and Preparation 

Daily historical Bitcoin prices from Apr. 30, 2016, to Apr. 

03 2021 were obtained from CoinDesk data [21]. The data 

consisted of five elements: opening, low, high, closing prices, 

and trading volume, as shown in Fig. 2 and Fig. 3, 

respectively. The data was pre-processed to remove missing 
values, normalize, and scale the magnitudes. Daily records 

missing any of the five elements were removed. 

Normalization was performed to remove trends. It was done 

by transforming the data such that the mean and standard was 

0 and 1, respectively. This step eliminates distribution 

assumptions of the data, thus improving the result of the 

MLP-NARX model. Finally, magnitude scaling was used to 

scale the data to between -1 and +1. This would help the MLP-

NARX to learn better since all inputs are within the activation 

region of the tangent-sigmoid activation function used in the 

hidden layer. 

2)  Generate Technical Indicators 

Technical indicators are mathematical and statistical 

techniques that attempt to forecast an asset's short-term future 

price. They are commonly used by day traders that rely on 

technical analysis to make trading decisions. Apart from the 

five inputs listed, three technical indicators - Moving Average 

(MA), Bollinger Bands (BB), and relative strength index 
(RSI) were added as inputs to the MLP-NARX model to help 

improve its prediction ability. All three indicators have 

modifiable parameters that influence the indicators' values, 

and they were modified using the PSO algorithm. 

 
Fig. 2  Bitcoin daily prices from Apr. 30 2016 to Apr. 03 2021 

 

 
Fig. 3  Bitcoin daily volume from Apr. 30 2016 to Apr. 03 2021 

 

MA is a trend discovery method that uses a series of 

averages of distinct subsets of the whole data set to examine 

data points [22]. MA averages data points at specific time 

intervals in a moving window throughout the dataset. The 

averaging process helps to smoothen out noise so that clear 

trends can be discovered. MA can also be used as a gauge for 

resistance and support levels when the market is heading 
upwards or downwards, respectively. With the input from this 

indicator, the prediction model will know the limitation of the 

price fluctuation when it on uptrend or downtrend. 

BB is typically used to discover the beginning and end of 

trends. It is plotted at a standard deviation level above (upper 

band) and below (lower band) a simple moving average of the 

price [23]. Since Bitcoin is dependent on law of supply and 

demand, BB indicates whether Bitcoin is either oversold or 

overbought at any point in time. Overbought condition occurs 

when the price is close to the upper BB, while oversold occurs 

when the price is close to the lower BB. Like BB, RSI is a 

momentum indicator that evaluates measures overbought or 
oversold conditions for an asset based on the magnitude of 

recent price changes.  
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3)  Construct MLP-NARX model 

The Nonlinear Auto-Regressive Moving Average Model 

with Exogenous Inputs (NARMAX) model is widely 

considered to be a unified and accurate representation of a 

wide variety of prediction models [24]. The NARMAX model 
has several derivatives, including NARX, a non-linear version 

of the ARX model [20] that performs well in non-linear 

dynamic systems. The model is represented by Eq. (1). 

 ���� � �� � ��� 	 1�, ��� 	 2�, … , ��� 	 ���,
��� 	 ���, ��� 	 2�, … , ��� 	 ���� � ���� (1) 

where ��  is the estimated model, ��� 	 1�, ��� 	2�, … , ��� 	 ���  are lagged output terms, and ��� 	
���, ��� 	 2�, … , ��� 	 ���  are lagged input terms, 

Parameter �� is the input signal time delay, its value is usually 

1 except for cases where the input ����  is required for 

identification (in which case, �� � 0) [25].  

The model  ��  can be created using various statistical or 
AI-based algorithms. The MLP neural network was used for 

this research to create the NARX model (Fig. 4) since it is an 

established method with a proven track record. The MLP-

NARX model was configured as a three-layer network 

function approximation network with a tangent-sigmoid 

activation function at its hidden layer and linear activation 

function at the output layer. The MLP-NARX network has 

several optimizable parameters – input (��) and output (��) 

lags, and the number of its hidden units (ℎ). These values were 

also optimized using the PSO algorithm.  

The NARX network trains the network in an open-loop 

series-parallel architecture. Levenberg-Marquardt (LM) was 

chosen as the training algorithm due to its proven 

performance for function approximation networks. Nguyen-

Widrow (NW) was used to initialize the weights [26]. It 

randomly distributes the initial weights between active 
regions in the hidden and output activation functions to 

accelerate training. Additionally, Early Stopping (ES) was 

used to prevent overfitting. ES divides the dataset into 

training, validation, and testing datasets according to a 

predefined ratio (in our case, the ratio was 70:15:15). The 

training dataset was actively used to adjust the MLP-NARX 

weights, while the validation set monitors training for signs of 

overfitting. The training was stopped when this occurred. The 

testing set is an unbiased and independent dataset used to 

examine the performance of the network post-training.  

 

 
Fig. 4  Structure of MLP-NARX model 

4)  Parameter optimization using PSO  

PSO is a population-based optimization method inspired by 

the organizational behavior of swarming animals in search of 

food. The movement of the particles (members of the swarm) 

is guided by their personal best position (�����) as well as the 

swarm's best position (����� ). The particle's direction, its 

personal best record, and the swarm's best record are then 

updated after each iteration until the terminating condition is 

reached (either the objective is achieved, or the objective has 

been discovered. PSO is a memory and computationally 

efficient stochastic optimization algorithm due to its simple 

mathematical operations and requires minimum memory [27]. 

The guiding equations of the PSO algorithm are shown in Eq. 

(2) and Eq. (3). 

  !� � ∁ # !� � $% & '% & ������ 	 (!�� �
$) & ') & ������ 	 (!�� * (2) 

 (!� � (!� �  !� (3) 

where ∁ is the constriction factor (Eq. 4): 

 ∁� )
+),-,.-/,0-+ ∋  3 � $% � $) 4�5  3 6 4 (4) 

Altogether, the MLP-NARX inputs involve the adjustment 

of seven parameters, namely the number of MLP hidden units 

(ℎ), input lag (��), output lag (��) and the random seed ('). 

Additionally, technical indicators used also involve the 

adjustment of window sizes for each (89:, 8;<=, 8>>). These 
windows were also adjusted automatically using PSO. The 

fitness function minimizes the cumulative Mean Squared 

Error (MSE) of the training, validation, and testing sets. 

The PSO algorithm itself has several main modifiable 

parameters - swarm size, the number of particles, and the 

random seed. The swarm size and particle values should be 

sufficiently large to encompass some meaningful part of the 

solution space. However, the values must not be too large that 

it consumes too much computational power. The random seed 

value is a pointer to the numbers generated by the Mersenne-
Twister (MT) pseudo-random number generator in 

MATLAB. The seed will set the initial particle position at the 

same position before optimization.  

Secondary PSO parameters control how the particles 

traverse the solution space. They are shown in Table 2. The 

velocity range ( ?!@  and �?AB) determines the minimum and 

maximum values the particles can move from their current 

position at each iteration. The range of positions ((?!@  and (?AB) ensures that the solutions stay away from unfeasible 

regions. The  ?!@   and �?AB  values were set to between -1 

and +1, while the (?!@  and (?AB  values were set to between 

0 and +1. These settings ensure that the solution area is always 

within 0 and 1.   

The values were then subjected to a scaling equation to 

transform them into the desired individual range of the 

parameter values (Eq. 5): 

 4 � �ACDE,ACFG���,�CFG�
�CDE,�CFG � 4?!@  (5) 

where: 

 4 = scaled value H = original value 4?!@   = desired minimum target range 4?AB  = desired maximum target range H?!@  = minimum original input range H?AB  = maximum original input range 
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TABLE II 

PSO PARAMETER VALUES 

Parameter Value 

Swarm Size 50 

Maximum Iteration 100 

Random Seed, ' 0, 10,000, 20,000 

 ?!@ -1 

 ?AB +1 

(?!@ 0 

(?AB +1 

�� range 1 to 30 

�� range 1 to 30 

ℎ 1 to 30 

89:, 8>> , 8;<= range 1 to 30 

C. Model Validation 

Model validation is necessary to guarantee that the model 

appropriately describes the system's behavior. The tests for 

model validation are categorized into two – model fit and 

residual tests. 

1)  Model fitting tests 

Model fitting refers to how well a prediction model 

generalizes the data relative to actual data. A well-fitted 

model balances accuracy and generalization (subject to 

residual validation). In contrast, an overfitted model fits 

previously seen data closely but has trouble generalizing to 

previously unseen data. This behavior is undesirable and can 

be easily detected using residual validation techniques. 
However, residual validation was not performed in the papers 

that we reviewed. 

The model fit category tests are the MSE, One Step Ahead 

(OSA) and I) analysis. OSA measures the ability of a model 
to predict the future Bitcoin price in the form of Eq. (6): 

 ���� � ��J���� (6) 

where ��∗� is the estimated non-linear model, and J��� are 

the model regressors/parameters. In the case of MLP-NARX, J���  are the weights in the network. I)  is a measure to 
indicate the goodness-of-fit of a model. Other works [28] have 

extended its usage to measure non-linear model fit, originally 

intended for linear regression problems. The I)  the measure 
is calculated as Eq. (7). 

 I) � 1 	 ∑ ��F,�MF�GFNO /
∑ ��F,�P�/GFNO  (7) 

where �!  and �M!  are actual and estimated observations at 

interval Q, respectively. � is the number of observations and �P 

is the mean value of �. 

2)  Residuals tests 

The residuals test tests the randomness of the residuals to 

ensure it collects all the dynamic datasets. The residual tests 

are residual plot, histogram analysis, error histogram, and 

auto- and cross-correlation tests. Ideally, the residuals should 

appear as white noise – meaning that the model has captured 

all the dynamics in the system. Residual plots can be used to 

examine the difference between actual and predicted data, and 

they are useful for detecting patterns in the residuals. As 
mentioned previously, these patterns indicate unmodeled 

dynamics in the data. The model should be improved 

iteratively until they address these absent dynamics. 

A histogram is a graphical method to present a distribution 

summary of a univariate data set [29]. It is drawn by 

segmenting the data into equal-sized bins (classes), then 

plotting the frequencies of data appearing in each bin. The 

horizontal axis of the histogram plot shows the bins, while the 

vertical axis depicts the data point frequencies. The histogram 

analysis is used to view the distribution of the residual. White 

noise residuals should appear normally distributed with a 

Gaussian bell-shaped curve. 
Correlation tests measure the correlation between two 

time-series sequences at different points in time. They are 

useful indicators of dependencies and correlatedness between 

two sequences. Correlation tests are done by shifting the 

signals at different lags and measuring the correlation 

coefficients (degree of correlation). For the purpose of this 

paper, two important correlation tests are the correlation 

between the residuals and themselves (autocorrelation of 

residuals) and the cross-correlation between the residuals and 

the output. The tests are mathematically described in Eq. (8) 

and Eq. (9), respectively. 

 RSS�T� � UV��� 	 T� ∙ ��T�X � Y�T� (8)  

 R�S�T� � UV��� 	 T� ∙ ��T�X � 0 ∀ T (9)  

where UV∙X is the mathematical expectation of the correlation 

function, T  is the lag space, and is Kronecker delta Y�T� 

defined as Eq. (10): 

 Y�T� � [0, T ≠ 01, T � 0 (10) 

III.  RESULT AND DISCUSSION 

A. PSO Training Results 

Table 3 shows the PSO optimization. Three MT random 

seeds were tested to give different starting search points for 

PSO particles. The results suggest different final solutions for 

each seed, generally settling at approximately 0.002 MSE. 

The MSE values for all three solutions appear to approach 0, 
indicating that the MLP-NARX model optimized the model 

to reduce the residuals sufficiently. 

The best-performing results were at random seed 0 (Table 

4). The results show that MLP-NARX model relied heavily 

on the technical indicators as many past lags were required to 

achieve the desired results. The best result (']<^ � 0) needed 

less past input and outputs, while the second-best and third-

best results utilized more past lags to create the output. The 

best networks were not particularly large as approximately 

seven to 24 hidden units appear to achieve good results. 

TABLE III 

PSO OPTIMIZATION RESULTS 

Swarm Size Max 

Iteration 

Random 

Seed 

Fitness 

(MSE) 

50 100 0 0.000209 

50 100 10,000 0.000246 

50 100 20,000 0.000260 

Average 0.000238 
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TABLE IV 

OPTIMAL VALUES SELECTED BY PSO AT DIFFERENT PSO RANDOM SEEDS 

Parameter Opt. Value 

(_`ab � c) 
Opt. Value 

(_`ab �dc, ccc) 

Opt. Value 

(_`ab �ec, ccc) ��  1 1 21 ��  1 15 1 

ℎ  24 20 7 '9f],g:;h  14,274 4,500 4,057 89:  27 12 6 8>>  15 30 9 8;<=  24 27 30 

B. MLP-NARX Training Performance 

The best MLP-NARX training performance plot is shown 

in Fig. 5. Initially, the MSE value was high due to random 

initial weights. However, as training progressed, the errors 

gradually decreased as the MLP weights were updated. The 
training was stopped at epoch 5 due to ES with a final training 

MSE score of 5.47 & 10,0. The training was stopped early to 

avoid the MLP-NARX from overfitting the training set. ES 

does this by monitoring the performance of the MLP-NARX 

on the independent validation set. The training was stopped 

because the validation error increased consecutively six times 

(Fig. 5). Any training beyond this point would reduce the 

generalization of the MLP-NARX. 

 

 
Fig. 5  MLP-NARX training performance 

C. One-Step Ahead Prediction 

The OSA test was used to assess the model's predictive 

capacity, as it attempts to forecast one step forward in time 

based on previous data. Fig. 6 to Fig. 8 show the OSA results 

for the training, validation, and testing sets, respectively. A 

large overlap between the actual (blue) and predicted (red) 

data for training, validation, and testing sets indicates a good 

agreement between the actual and forecasted data. The model 
appears to struggle during periods of abrupt price swings as it 

needs to adjust its predictions slightly from relatively stable 

past data. This can also be confirmed from the residual plot 

(Fig. 8), which shows increased residual magnitudes during 

high price swings. 

 

 
Fig. 6  OSA prediction for a training set 

 

 
Fig. 7  OSA prediction for the validation set 

 

 
Fig. 8  OSA prediction for the testing set 

D. Residual Plot 

Fig. 9 shows the residual plot for training, validation, and 

testing sets. The range of prediction error on all datasets 
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ranged from approximately -USD 3,000 to USD 4,000. 

Higher residuals were observed when there were rapid and 

significant price variations. This is because volatile price 

fluctuations reduce the model's effectiveness in predicting the 

output, as the model cannot rely much on historical data to 

make predictions. Overall, the residuals are not patterned, i.e., 

systematically high or low. They appear to be centered on zero 

throughout the range of fitted values, but major bitcoin price 

swings will dramatically increase the residuals' magnitude. 

 

 
Fig. 9  Residual plot for all datasets 

E. Residuals Analysis 

The randomness of the residuals is important to verify that 

the model has captured all the dynamics in the dataset. If the 

model is successful in this task, it should leave behind only 

white (random and uncorrelated) noise as its residuals. Non-

random patterns in the residuals indicate that the model's 

predictor variables have not sufficiently captured important 
explanatory information, which manifests in the residuals 

[30]. Several tests were used to test the whiteness of the 

residuals – error histogram, autocorrelation, and cross-

correlation.  

The histogram distribution of the residuals is shown in Fig. 

9. White noise distribution should appear as a Gaussian curve 

with the highest distribution in its center and tapering off at 

both tails. This observation is evident in Fig. 10. 

 

 
Fig. 10  Residual histogram for all datasets 

For the autocorrelation test, the residuals, ���� , were 

compared with themselves. If the residuals are randomly 

distributed, we expect the correlation coefficient to be one for 

lag zero and generally within the 95% confidence limits (blue 

line) for any other lags. Fig. 11 shows the autocorrelation 

results. Apart from some coefficient violations, all three 

datasets appear to have passed the abovementioned criteria. 

 

 
Fig. 11  Residual autocorrelation results 

 

The cross-correlation test compares the output signal, ����, 

with the residuals, ���� . If the residuals are randomly 

distributed, we expect the correlation coefficient to be 

generally within the 95% confidence limits for all lags. Fig. 

12 shows the cross-correlation test results. The results 
indicate that the correlation coefficients were generally within 

the prescribed limit, albeit with minor violations. These 

figures concluded that although small information is still 

present in the residuals, they were largely random. Based on 

this observation, the residuals were accepted as random noise 

and subsequently the model was acceptable. 

 

 
Fig. 12  Residual cross-correlation results 
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IV. CONCLUSION 

An MLP-NARX prediction model for Bitcoin forecasting 

is presented in this paper. Objective 2 was addressed by 

constructing an MLP-NARX model that utilizes historical 

prices (opening, low, high, closing prices, and trading 

volume) to help it anticipate the momentum of price 

fluctuations and evaluate overbought or oversold conditions. 
Residual analysis (Objective 1) was performed using 

histograms, autocorrelation, and cross-correlation tests to 

ensure that the model was unbiased. After running the 

validation and fitting test, the model had successfully 

predicted a price one day ahead based on the high number of 

overlaps in the OSA prediction test. Based on the residuals 

histogram and correlation test's result, the model has captured 

most of the dynamics in the dataset by proving the 

randomness of the residuals. In conclusion, all the tests 

suggest that the model performed well with minimally 

correlated residuals. Finally, the PSO algorithm was used to 
discover optimal parameter values for the model, such as 

technical indicator window sizes, hidden units, and lag terms 

to use in the model (Objective 3).  
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