
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Exploration of The Impact of Kernel Size for YOLOv5-based Object

Detection on Quadcopter

Rissa Rahmania a, Felix Corputty b, Suryo Adhi Wibowo b,*, Dany Eka Saputra a, Annisa Istiqomah a

a Computer Science Departement, School of Computer Science, Bina Nusantara University, Bandung Campus, Jakarta, Indonesia
b School of Electrical Engineering, Telkom University, Bandung, Indonesia

Corresponding author: *suryoadhiwibowo@telkomuniversity.ac.id

Abstract— Drones or quadcopters have been widely used in various fields based on deep learning, especially object detection. However,

drone vision characteristics such as occlusion and small objects are still being explored for performance in terms of accuracy and speed

detection. The YOLO architecture is very commonly used for cases requiring high-speed detection. To overcome the limitations of

drone vision, in this paper, we explore the size of the YOLOv5s backbone kernel in the shallowest convolutional layer to achieve better

performance. The kernel is a filter that has a main role in the feature map, and it defines the size of the convolution matrix, and the

resulting features in the shallowest convolutional layer are more representative of the case of object detection and recognition. The

techniques can be divided into three major categories: (1) data preprocessing, which involves augmentation and normalization of the

data, (2) kernel size exploration in the shallowest convolutional layer of the YOLOv5s, and (3) model implementation in the real

environment using the quadcopter. The dataset consisted of four classes representing dragon fruit, snake fruit, banana, and pineapple,

with a total of 8000 data. Exploration results with kernel size give promising results. Kernel sizes 5 and 7 give an mAP of 0.988. Through

these results, modification of the kernel size provides an opportunity for more in-depth investigations, such as with the epoch parameter,

padding scheme, and other optimization techniques.

Keywords— YOLOv5; object detection; kernel size; quadcopter; deep learning.

Manuscript received 1 May. 2022; revised 19 Jun. 2021; accepted 12 Jul. 2022. Date of publication 30 Sep. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

An unmanned aerial vehicle (UAV), known as a drone, is

an airplane with a controlling system and its mechanism using

a remote control or person controlled independently by a

computer. Internet of Things (IoT) networks in the future of

6G communications require drones to act from sensors until

performing the required actions [1]. Drones are an important

research topic, and in recent years drone research continues to
be carried out in various research areas such as positioning,

navigation, controls, imaging, communications, sensors,

materials, batteries, circuits, and motors. In the UAV platform,

the camera is used as a sensor part in both Fixed-wing,

Helicopter, Quadcopter, and Octocopter [2].

In the field of imaging, computer vision on drones has

become an interesting topic because it has been proven that it

can be used in various application fields such as

reconnaissance [3], surveillance [4], agriculture [2], and site

mapping [5], and others. Research on matters that are closely

related to drone needs has actually been entirely researched,

such as visual tracking [6], [7], along with the optimization of
one of the methods, Histogram of Oriented Gradients (HOG)

[8]. However, challenging drone vision characteristics are still

issues, and optimal solutions are still needed. Issues related to

drone characteristics on UAV datasets are small objects

[9][10], occlusion [11], moving objects [12], and data

augmentation [7]. This topic continues to be explored for

implementing the research goal of an effective and efficient

autonomous drone.

To improve detection performance in drone vision,

research on real-time object detection has been accomplished,

such as by Zhang et al. [13] developing SlimYOLOv3 to
overcomdrones' limited memory and computing power. In

addition, Wu et al. [14] modified YOLOv3 to detect cars,

trucks, buses, and pedestrians for effective and robust

implementation in real-time object detection. While missed

detection still occurred. In other research by Zhang et al. [15],

overcoming issues from drones by performing keyframe

extraction, Baykara et al. [16] implemented TinyYOLO for

efficient multiple object detection, and Lee et al. [17]

involved cloud servers by using Fast YOLO on local and

726

JOIV : Int. J. Inform. Visualization, 6(3) - September 2022 726-735

Faster RCNN on a cloud. However, an error occurred during

real-time testing, which implies non-effectiveness for drones

in real-time conditions. Then, to achieve better metrics, in

different cases, Wiranata et al. [18] performed a padding

scheme technique to detect vehicles using the AlexNet

architecture. However, satisfactory accuracy does not meet

real-time object detection requirements. The architecture

involves a convolutional neural network (CNN) eight layers

deep.

In order to conquer real-time performance, the one-stage

detectors are used in much previous research, specifically
deep learning for drone vision in real-time object detection.

You Only Look Once (YOLO) [19], [20] is one of the

methods that is widely used because it predicts the object in a

single step without using region proposals. However, optimal

accuracy still needs to be explored with all kinds of techniques.

Because of this fact, exploration of kernel size and stride in

the YOLOv5s backbone are proposed. The rest of this paper

is organized as follows. Section II describes the materials and

the proposed method. The results and discussion are described

in Section III. Section IV provides some concluding remarks.

II. MATERIALS AND METHOD

This section describes the quadcopter, deep learning, and

transfer learning concepts. The quadcopter is used in this

research, and the YOLOv5s method is implemented for object

detection. The basic concept of deep learning with a

Convolutional Neural Network (CNN) and transfer learning

for using the method as a pre-trained model is explained.

A. Quadcopter

Historically, drones have been widely used for the military,

which later increased their use in non-military applications. In

Fig.1, it is shown that UAVs based on their wings, are divided

into two types, namely Fixed-Wing and Rotary-Wing. The

easiest example of Fixed-Wing is an airplane. Meanwhile, the

quadcopter is one of the UAV platform types with Rotary-

wing, which is included in the multi-rotor type [21].

Compared to other types of UAVs, the quadcopter is

relatively small and carries a small payload, around 1.25 kg.
This type is usually used for mapping and reconnaissance.

Quadcopter has many types of sensor preferences in the

camera section. Some of them are RGB cameras, Thermal

cameras, Multi-spectral cameras, and Visible-light cameras.

This type of drone can also communicate using WiFi,

Wireless Radio, and Xbee [2].

Fig. 1 Platform types of UAV.

The use of a quadcopter for object detection applications

requires a computing platform installed onboard. The

platform is able to use Arduino [22], Raspberry Pi, NVIDIA

Jetson [23], and others. Therefore, several things that need to

be considered in its implementation are the platform type,

hardware components, and communications.

B. Deep Learning-based Object Detection

Convolutional Neural Network (CNN) is a method that is
very commonly used specifically for Deep Learning. Deep

learning is a part of Machine Learning that uses neural

networks with deep structures to solve learning problems and

the human brain system. The basic concept of deep learning

methods is to perform a series of data science processes, from

collecting datasets and labeling objects to conducting training,

testing, and validation.

Datasets concerned with UAVs, such as VisDrone [24],

MOR-UAV [25], and others, can be used openly to exp their

objects' characteristics. Naturally, the bird-view taken from

the drone camera brings up the characteristics of the object
described in Section I. Then, the training process begins with

filtering and continues with the convolution process. In the

convolution process, each neuron receives an input, then

performs a dot operation with weight and bias. In this process,

stride and padding are determined. In addition, it involves

activation functions that are in the hidden layer and output

layer, which play a role in making decisions. Then in the

pooling phase, the pixel image is selected using the average

pooling or max-pooling technique [26]. Therefore, the system

can perform classification, detection, or recognition.

Specifically for object detection, there are two types of

detection schemes: wo-Stage Detector [27], [28] and a One-
Stage Detector. Object detection with a Two-Stage Detector

scheme has two stages: Region Proposal Network (RPN) and

Classification Stage. R-CNN, Fast R-CNN, Faster R-CNN,

and Cascade R-CNN are methods that are already used for

UAV datasets [29]. In comparison, the One-Stage Detector

concept can directly provide bounding box and object

classification because it uses a single fully convolutional

network. The well-known One-Stage Detector architectures

are YOLO and SSD [30].

In this research, the architecture that has been built on the

One-Stage Detector is used and then adapted and fine-tuned.
This process is also known as transfer learning. To use the

pre-trained model, it is necessary to first identify the

characteristics of the architecture and the dataset that has been

trained. In the adaptation process, load models are performed,

and architectural modifications are made according to the data

they have. At this stage, the architectural parameters and the

resulting output need to be considered. For instance, adjusting

the number of classes that can be detected by the architecture

to be used. Since this information can be detected in the

classifier step of architecture, it is possible to adapt the

classifier to the dataset. Furthermore, retraining is carried out
with a low learning rate in fine-tuning the selected

architecture.

The transfer learning concept needs to ensure the overfit

condition because the new dataset must apply to the pre-

trained model. In this paper, the concept of transfer learning

is performed on the YOLOv5s architecture. Therefore, this

paper will focus on discussing YOLOv5s and the transfer

727

learning process, which specifically refers to the shallowest

part of the YOLOv5s architecture.

C. YOLOv5

In contrast to the sliding window and region-based

proposal techniques, the YOLO architecture processes entire

parts of the image during the training and testing stages [19].

The basic concept of the YOLO algorithm is to execute the

algorithm shown in Fig. 2. The input of YOLO is a
preprocessed image along with the object labeling

information. Preprocessed images include resizing and

augmentation if needed. YOLO detects the coordinate of the

objects with the help of a grid cell system that is set through a

variable named batch size.

The cell will later help the system find out the location of

the object in the image with the help of ������, the result of

object labeling. These results contain information on the ��

variable, which indicates the availability of an object in the

image, 	
 and 	� are the � dan � coordinates to determine

the center point of the object. Then, 	
 and 	� define the

width and height of the bounding box. The variables �� and

�� represent class information. If there is no object in the

image, then the value of �� would be zero, followed by other

variables.

YOLOv5 is an extension of YOLOv4 [20]. The YOLOv5

has several types, specifically YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. The YOLOv5

implements a cross-stage partial (CSP) model based on a

dense network (DenseNet), thus making this architecture a

major contribution to inference speed and model size [31].

YOLOv5 is open-source and can be accessed at [32]. The

training process is executed by involving ������ in the network

from YOLOv5, which is shown in Fig. 2. The YOLOv5

architecture is divided into three parts, consisting of the

backbone, neck, and head. In the backbone section, feature

extraction is performed by CSPDarknet [33] and spatial

pyramid pooling (SPP) [34].

Algorithm 1: Object Detection YOLO Algorithm

1:
2:

Input: preprocessed images (������), label object

information (������)

Output: image with a bounding box (mAP, precision,
recall)

3: Step 1 (Divide image into grid cell system)

4: Initialize step size on each image (������)

5: Step 2 (Detect the center of object on each cell)

6: Compute y_train (�� , 	
 , 	�, 	� , 	
 , ��, ��)

10: Detect object in the image (��)

11: Detect height and weight of rectangle bounding box

(� , 	
)

12: Detect the location of the center point of each object

in the cell of an image (
 , 	�)

13: Detect the class (�� , ��)

14: Step 3 (Training Process)

15: Compute y_train into Backbone, Neck, and Head

16: Step 4 (Prediction Process)

17: Compute mAP, precision, and recall on each bounding
box with Non-Max Suppression

Fig. 2 Object detection of YOLO Algorithm.

Fig. 3 Architecture of YOLOv5.

The role of CSPDarknet is to reduce the amount of

computation. Where involves Partial Dense blocks, which are

connected by transition layers. Then on the neck, the image

feature is combined through several layers to arrive at a

prediction. Then, in the head section, predictions of bounding

boxes, class, coordinate, score, and size are made. This

process is a one-forward pass stage that is not repeated.

In the concept of transfer learning that can be performed on

the YOLOv5s architecture, the amount and the characteristics

of the dataset that has been trained on the YOLOv5

architecture need to be considered. The YOLOv5 itself has

been trained using COCO datasets [35] with the number of

images per class � 1500, 10000 labels per class, and

variations in images based on time, weather, lighting, angles,

and different cameras. If the new datasets are in a small

number of data, where the characteristics are similar to those

that have been trained in the pre-trained YOLOv5s model, the

classifier step of the pre-trained model can be adjusted.

Further, the backbone step can be improved or modified.

Indeed, the thing to be avoided is small datasets with different

characteristics from the dataset in the pre-trained YOLOv5s

model. Therefore, the prediction results will be directly

obtained through the mean average precision (mAP),
precision (PR), and recall (RC) parameters with the Non-max

Suppression technique [36].

D. Kernel Size

In CNN, the convolutional layer is defined by several

parameters, such as kernel size, stride, and padding [37]. This

paper will focus on kernel size and stride to improve

performance. The kernel is a filter that has a main role in the

feature map and defines the convolution size. In comparison,
stride measures the kernel size shift in an image either

downwards (rows) or to the right (columns). By default, the

728

stride is one. However, this can be adjusted to pass through

more than one element. Fig. 3 shows the role of the kernel and

stride in providing the output. In Fig. 4(a), the computation

output in the lower leftmost cell is 0×0+6 ×1+0×2+0×3=6.

While the output cell size [37] is obtained by using the

equation,

�
�� ��������
��

� � �
�� ��������
��

� (1)

where �, , !, ", ℎ, and $ are the input image, kernel, padding,

stride, height, and weight of matrix dimensions, respectively.

III. RESULTS AND DISCUSSION

This section explains the proposed method, data

systematics, and performance parameters. The trained

YOLOv5s model will be implemented into a quadcopter.

With this implementation, the quadcopter will perform the

real-time inference process for object recognition. The data

systematics used in this paper are described briefly, and the

performance parameters used for system analysis will also be

presented.

A. Proposed Method

In this subsection, the proposed method is explained. The

quadcopter has the task of recognizing objects in the form of

fruits, including dragon fruit, snake fruit, banana, and

pineapple. For the system to detect and recognize these

objects, the YOLOv5s method is used in this research. The

initial process carried out is transfer learning by training on

the pre-trained model from YOLOv5s. The training used in

this paper uses a group of training data %�&�, �'. The training

data will be normalized to a size of 640×640 as input to the

YOLOv5s backbone. Furthermore, in the backbone, there are

several convolutional layers and CSP. While each step

involves a matrix with a size of ℎ � $ � (, where ℎ, $, and (

are the height, weight, and class of the object. The

convolutional layer serves as feature extraction, which will be

processed in the next layer.

In this research, the kernel size exploration was carried out

at the shallowest convolutional layer (shallow convolutional

layer). The Shallow convolutional layer is the earliest

convolutional layer. In this layer, the resulting features are

more representative of the case of object detection and

recognition. Therefore, in this layer, an exploration of the size
of the kernel that affects the formation of convolutional

features is carried out. Furthermore, the output from the layer

will be processed in the next convolutional layer until the

process in the backbone (CSPDarknet) is complete. The

output of the CSPDarknet backbone process is then processed

at the Path Aggregation Network Layer, which is the neck part

of the YOLOv5s Architecture. Parameters and processes

performed in the network layer use the default. From this

process, the convolution process is then carried out again

using a convolutional layer with a size of 256×85, 512×85,

and 1024×85, which will then get the outputs of 20×20×255,

40×40×255, and 80×80×255, respectively.

(a)

(b)

Fig. 4 Illustration of (a) convolution process with stride 3 and (b) kernel

operation.

The model that has been trained is then stored and the

loading process is carried out on a personal computer (PC) as

a processor for the quadcopter. Using the API, the connection
process between a PC and a quadcopter is done through WiFi

intermediaries. After all these processes run well, then the

inference process can be carried out in real-time. The

framework of this research is shown in Fig. 5.

B. Data Systematic and Requirement System

In this subsection, data systematics and system

requirements are explained. The dataset used in this research

consisted of four classes: dragon fruit, snake fruit, banana, and
pineapple, which were taken directly. Table 1 represents the

dataset information used. The dataset that is used is a self-

built dataset, which is taken by the quadcopter. This dataset

then entered the data augmentation proses in the form of

random affine (rotation, scale), mix-up, and copy-paste.

Augmentation with a mix-up is performed by combining

several classes in one image. In comparison, copy-paste

applied the same image but changed the focus of taking

objects on the captured image.

In addition, for the training process, from augmented

processing, 2000 data for each class were obtained from the

training process. With a total of 8000 data, to speed up the
training process, use the NVIDIA DGX A-100 AI

supercomputer with a Graphical Processing Unit (GPU)

capacity of 40GB for each core.

TABLE I
NUMBER OF CLASSES IN THE DATASET

Class Number

Dragon Fruit 104
Snake Fruit 197
Banana 130
Pineapple 163

729

Fig. 5 Our proposed method framework.

Based on the results of the augmentation data and the type

of object, this data with pre-trained YOLOv5s has a very

similar dataset with a large number of datasets. Therefore, the

purpose of transfer learning is to modify the backbone and

fine-tune the model to improve performance. Furthermore, for

the quadcopter used in this research, the DJI Tello 2 is used.

The DJI Tello 2 is a low-level quadcopter with specifications

for 5MP photos, 720p30 video, 98×92.5×41mm, and a battery

capacity of 1190mAh with a voltage of 3.8volt. This

quadcopter can be used indoors or outdoors and meets the
quality requirements of laboratory-scale research. The kernel

sizes used in this research were 5, 6, 7, 8, and 9 with stride 4.

The illustration of this research is represented in Fig. 6.

C. Performance Parameter

To find out and analyze whether the model generated from

this research is well performed or not, several performance

parameters such as precision (2), recall (3), and mAP (4) [37]

are used with the equation,

 �) * +,
+,�-, (2)

)� * +,
+,�-. (3)

 /0� * �
.

∑ 0��
.
�2� , 0� * 3 !&4'54�

6 (4)

where �),)�, 7�, 8�, 89, 9, and 0� is precision, recall,

true positive, false positive, false negative, number of classes,

and mean average precision, respectively. For !&4' is a

function of precision. Precision is the ratio of TP to the sum

of TP and FP.

7� is a condition where the objects have been labeled

from the training data in an image, and the location of the

labels is very similar to the bounding box generated from the

training/validation/testing results. Meanwhile, 8� is a
condition where there are objects labeled from the training

data in the image, and the labels' location is not the same as

the bounding box generated from the results of

training/validation/testing. Then, 89 is a condition where

objects should be detected, but there are no bounding boxes

in the image.

D. Result

In the first experiment, the kernel size used was 5. Fig.7
represents the graphic results of the exploration consisting of

box loss, classification loss, and object loss. The three

graphics are the result of loss after doing 300 epochs and are

marked with red and green lines for training and validation,

respectively. In all three, it is shown that the loss value tends

to continue to decrease. This graphic shows a very well

performance. The results of these three graphics also occur in

Fig. 7-Fig. 12.

From these results, kernel size 5 has excellent performance

with precision, recall, and mAP values of 0.981, 0.983, and

0.988, respectively. While for the second experiment using
kernel size 6, the results for precision, recall, and mAP were

0.981, 0.983, and 0.978, respectively. These results can be

seen in Fig. 8. In Fig. 9, the results of the third experiment

using kernel size 7 are represented.

Fig. 6 Our research implementation in real environment

The results obtained from the experiment are the precision,

recall, and mAP values are 0.981, 0.983, and 0.988,

730

respectively. For kernel size 8, the results are shown in Fig.

10, the precision, recall, and mAP values are 0.982, 0.983,

and 0.984, respectively. In the last experiment, using kernel

size 9, the values of precision, recall, and mAP were 0.978,

0.983, and 0.988, respectively. These results can be seen in

Fig. 11. While using the default YOLOv5s, the precision,

recall, and mAP results obtained are 0.982, 0.983, and 0.980.

These results are represented in Fig. 12. Based on the results

shown in Fig.7-Fig.12, the precision, recall, and mAP values

show excellent results. The selection of the best kernel is

based on the mAP score, where the best mAP value is

generated when the kernel size is 5 and 7, which is 0.988.

Fig. 7 Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (5) and stride (4)

Fig. 8 Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (6) and stride (4)

731

Fig. 9 Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (7) and stride (4)

Fig. 10 Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (8) and stride (4)

732

Fig. 11 Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (9) and stride (4)

Fig. 12 Box loss, classification loss, object loss, performance parameters of precision (P), recall (R), and mAP: YOLOv5 Default

IV. CONCLUSION

We have experimented with kernel size to improve object

detection performance for drones. Kernel size with an odd
size shows better results than kernel size with an even size.

While from the experiments carried out in this research,

kernel sizes 5 and 7 gave optimal results with precision, recall,

and mAP values of 0.981, 0.983, and 0.988, respectively.

Compared to the default from YOLOv5s, our proposed

method has mAP advantage of 0.008, close to 0.01. The

results of the box loss, classification loss, and object loss

graphs for kernel sizes 5 and 7 also give better results, with

the difference between the training and validation lines having

733

a shape similar to a small error gap. Therefore, the graph does

not represent the overfitting curve.

Based on the analysis, kernel sizes 5 and 7 have a better

impact on performance than the default network.

Modification of kernel size plays a role in the feature map

process. The YOLOv5s can be optimized for speed detection

needs. Moreover, this experiment can be expanded by

experimenting with a more in-depth investigation, such as the

epoch parameter, padding scheme, kernel design for detecting

edges, and other optimization techniques.

REFERENCES

[1] R. Shrestha, R. Bajracharya, and S. Kim, “6G Enabled Unmanned

Aerial Vehicle Traffic Management: A Perspective,” IEEE Access, vol.

9, pp. 91119–91136, 2021, doi: 10.1109/ACCESS.2021.3092039.

[2] J. Kim, S. Kim, C. Ju, and H. il Son, “Unmanned aerial vehicles in

agriculture: A review of perspective of platform, control, and

applications,” IEEE Access, vol. 7. Institute of Electrical and

Electronics Engineers Inc., pp. 105100–105115, 2019. doi:

10.1109/ACCESS.2019.2932119.

[3] Z. Liu, C. Liu, W. Zhao, and A. Li, “A User-Priority-Driven Multi-

UAV Cooperative Reconnaissance Strategy,” International Journal of

Aerospace Engineering, vol. 2021, pp. 1–14, Oct. 2021, doi:

10.1155/2021/9504056.

[4] S. K. Niranjan, REVA University, Institute of Electrical and

Electronics Engineers. Bangalore Section, and Institute of Electrical

and Electronics Engineers, Proceedings of the International

Conference on Smart Technologies in Computing, Electrical and

Electronics (ICSTCEE 2020) : October 9-10, 2020, Virtual

Conference.

[5] W. Jiang, Y. Zhou, L. Ding, C. Zhou, and X. Ning, “UAV-based 3D

reconstruction for hoist site mapping and layout planning in

petrochemical construction,” Automation in Construction, vol. 113,

May 2020, doi: 10.1016/j.autcon.2020.103137.

[6] S. A. Wibowo, H. Lee, E. K. Kim, and S. Kim, “Collaborative

Learning based on Convolutional Features and Correlation Filter for

Visual Tracking,” International Journal of Control, Automation and

Systems, vol. 16, no. 1, pp. 335–349, Feb. 2018, doi: 10.1007/s12555-

017-0062-x.

[7] S. A. Wibowo, H. Lee, E. K. Kim, and S. Kim, “Visual tracking based

on complementary learners with distractor handling,” Mathematical

Problems in Engineering, vol. 2017, 2017, doi:

10.1155/2017/5295601.

[8] S. A. Wibowo, H. Lee, E. K. Kim, and S. Kim, “Convolutional

Shallow Features for Performance Improvement of Histogram of

Oriented Gradients in Visual Object Tracking,” Mathematical

Problems in Engineering, vol. 2017, 2017, doi:

10.1155/2017/6329864.

[9] M. Liu, X. Wang, A. Zhou, X. Fu, Y. Ma, and C. Piao, “Uav-yolo:

Small object detection on unmanned aerial vehicle perspective,”

Sensors (Switzerland), vol. 20, no. 8, Apr. 2020, doi:

10.3390/s20082238.

[10] X. Zhang, E. Izquierdo, and K. Chandramouli, “Dense and Small

Object Detection in UAV Vision based on Cascade Network.”

[Online]. Available: http://www.goldmansachs.com/our-

thinking/technology-driving-

[11] Z. Pi, Y. Lian, X. Chen, Y. Wu, Y. Li, and L. Jiao, “A Novel Spatial

and Temporal Context-Aware Approach for Drone-Based Video

Object Detection,” 2020. doi: 10.1109/ICCVW.2019.00027.

[12] K. M. Abughalieh, B. H. Sababha, and N. A. Rawashdeh, “A video-

based object detection and tracking system for weight sensitive UAVs,”

Multimedia Tools and Applications, vol. 78, no. 7, pp. 9149–9167, Apr.

2019, doi: 10.1007/s11042-018-6508-1.

[13] P. Zhang, Y. Zhong, and X. Li, “SlimYOLOv3: Narrower, Faster and

Better for Real-Time UAV Applications.” [Online]. Available:

https://github.com/PengyiZhang/SlimYOLOv3.

[14] Q. Wu and Y. Zhou, “Real-Time Object Detection Based on

Unmanned Aerial Vehicle,” 2019. doi:

10.1109/DDCLS.2019.8908984.

[15] J. Zhang, X. Liang, M. Wang, L. Yang, and L. Zhuo, “Coarse-to-fine

object detection in unmanned aerial vehicle imagery using lightweight

convolutional neural network and deep motion saliency,”

Neurocomputing, vol. 398, pp. 555–565, Jul. 2020, doi:

10.1016/j.neucom.2019.03.102.

[16] H. C. Baykara, E. Biyik, G. Gul, D. Onural, and A. S. Ozturk, “Real-

time detection, tracking and classification of multiple moving objects

in uav videos,” in Proceedings - International Conference on Tools

with Artificial Intelligence, ICTAI, Jun. 2018, vol. 2017-November, pp.

945–950. doi: 10.1109/ICTAI.2017.00145.

[17] J. Lee, J. Wang, D. Crandall, S. Sabanovic, and G. Fox, “Real-time,

cloud-based object detection for unmanned aerial vehicles,” in

Proceedings - 2017 1st IEEE International Conference on Robotic

Computing, IRC 2017, May 2017, pp. 36–43. doi:

10.1109/IRC.2017.77.

[18] A. Wiranata, S. A. Wibowo, R. Patmasari, R. Rahmania, and R.

Mayasari, “Investigation of Padding Schemes for Faster R-CNN on

Vehicle Detection,” 2018. doi: 10.1109/ICCEREC.2018.8712086.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look

Once: Unified, Real-Time Object Detection,” Jun. 2015, [Online].

Available: http://arxiv.org/abs/1506.02640.

[20] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal

Speed and Accuracy of Object Detection,” Apr. 2020, [Online].

Available: http://arxiv.org/abs/2004.10934.

[21] B. Custers Editor, “The Future of Drone Use Opportunities and

Threats from Ethical and Legal Perspectives.” [Online]. Available:

http://www.springer.com/series/8857.

[22] H. Takano et al., “Visible Light Communication on LED-equipped

Drone and Object-Detecting Camera for Post-Disaster Monitoring,” in

IEEE Vehicular Technology Conference, Apr. 2021, vol. 2021-April.

doi: 10.1109/VTC2021-Spring51267.2021.9448902.

[23] S. Hossain and D. J. Lee, “Deep learning-based real-time multiple-

object detection and tracking from aerial imagery via a flying robot

with GPU-based embedded devices,” Sensors (Switzerland), vol. 19,

no. 15, Aug. 2019, doi: 10.3390/s19153371.

[24] D. Du et al., “VisDrone-DET2019: The Vision Meets Drone Object

Detection in Image Challenge Results.” [Online]. Available:

http://www.aiskyeye.com/.

[25] M. Mandal, L. K. Kumar, and S. K. Vipparthi, “MOR-UAV: A

Benchmark Dataset and Baselines for Moving Object Recognition in

UAV Videos,” in MM 2020 - Proceedings of the 28th ACM

International Conference on Multimedia, Oct. 2020, pp. 2626–2635.

doi: 10.1145/3394171.3413934.

[26] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection with

Deep Learning: A Review,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 30, no. 11. Institute of Electrical and

Electronics Engineers Inc., pp. 3212–3232, Nov. 01, 2019. doi:

10.1109/TNNLS.2018.2876865.

[27] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic segmentation,”

Nov. 2013, [Online]. Available: http://arxiv.org/abs/1311.2524.

[28] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks,” Jun. 2015,

[Online]. Available: http://arxiv.org/abs/1506.01497.

[29] L. Jiao et al., “A Survey of Deep Learning-based Object Detection,”

Jul. 2019, doi: 10.1109/ACCESS.2019.2939201.

[30] W. Liu et al., “SSD: Single Shot MultiBox Detector,” Dec. 2015, doi:

10.1007/978-3-319-46448-0_2.

[31] A. A. Abdelhamid, S. R. Alotaibi, and A. Mousa, “Deep learning-

based prototyping of android gui from hand-drawn mockups,” IET

Software, vol. 14, no. 7, pp. 816–824, Dec. 2020, doi: 10.1049/iet-

sen.2019.0378.

[32] G. Jocher, “YOLOv5,” 2020. https://github.com/ultralytics/yolov5

(accessed Jul. 08, 2022).

[33] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, and J.-

W. Hsieh, “CSPNet: A New Backbone that can Enhance Learning

Capability of CNN,” Nov. 2019, [Online]. Available:

http://arxiv.org/abs/1911.11929.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep

Convolutional Networks for Visual Recognition,” Jun. 2014, doi:

10.1007/978-3-319-10578-9_23.

[35] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,”

May 2014, [Online]. Available: http://arxiv.org/abs/1405.0312.

[36] J. Hosang, R. Benenson, and B. Schiele, “Learning non-maximum

suppression,” 2017. Accessed: Jul. 08, 2022. [Online]. Available:

https://arxiv.org/abs/1705.02950.

[37] L. Alzubaidi et al., “Review of deep learning: concepts, CNN

architectures, challenges, applications, future directions,” Journal of

Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00444-8.

734

735

