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Abstract— Drones or quadcopters have been widely used in various fields based on deep learning, especially object detection. However, 

drone vision characteristics such as occlusion and small objects are still being explored for performance in terms of accuracy and speed 

detection. The YOLO architecture is very commonly used for cases requiring high-speed detection. To overcome the limitations of 

drone vision, in this paper, we explore the size of the YOLOv5s backbone kernel in the shallowest convolutional layer to achieve better 

performance. The kernel is a filter that has a main role in the feature map, and it defines the size of the convolution matrix, and the 

resulting features in the shallowest convolutional layer are more representative of the case of object detection and recognition. The 

techniques can be divided into three major categories: (1) data preprocessing, which involves augmentation and normalization of the 

data, (2) kernel size exploration in the shallowest convolutional layer of the YOLOv5s, and (3) model implementation in the real 

environment using the quadcopter. The dataset consisted of four classes representing dragon fruit, snake fruit, banana, and pineapple, 

with a total of 8000 data. Exploration results with kernel size give promising results. Kernel sizes 5 and 7 give an mAP of 0.988. Through 

these results, modification of the kernel size provides an opportunity for more in-depth investigations, such as with the epoch parameter, 

padding scheme, and other optimization techniques. 
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I. INTRODUCTION 

An unmanned aerial vehicle (UAV), known as a drone, is 

an airplane with a controlling system and its mechanism using 

a remote control or person controlled independently by a 

computer. Internet of Things (IoT) networks in the future of 

6G communications require drones to act from sensors until 

performing the required actions [1]. Drones are an important 

research topic, and in recent years drone research continues to 
be carried out in various research areas such as positioning, 

navigation, controls, imaging, communications, sensors, 

materials, batteries, circuits, and motors. In the UAV platform, 

the camera is used as a sensor part in both Fixed-wing, 

Helicopter, Quadcopter, and Octocopter [2].  

In the field of imaging, computer vision on drones has 

become an interesting topic because it has been proven that it 

can be used in various application fields such as 

reconnaissance [3], surveillance [4], agriculture [2], and site 

mapping [5], and others. Research on matters that are closely 

related to drone needs has actually been entirely researched, 

such as visual tracking [6], [7], along with the optimization of 
one of the methods, Histogram of Oriented Gradients (HOG) 

[8]. However, challenging drone vision characteristics are still 

issues, and optimal solutions are still needed. Issues related to 

drone characteristics on UAV datasets are small objects 

[9][10], occlusion [11], moving objects [12], and data 

augmentation [7]. This topic continues to be explored for 

implementing the research goal of an effective and efficient 

autonomous drone.  

To improve detection performance in drone vision, 

research on real-time object detection has been accomplished, 

such as by Zhang et al. [13] developing SlimYOLOv3 to 
overcomdrones' limited memory and computing power. In 

addition, Wu et al. [14] modified YOLOv3 to detect cars, 

trucks, buses, and pedestrians for effective and robust 

implementation in real-time object detection. While missed 

detection still occurred. In other research by Zhang et al. [15], 

overcoming issues from drones by performing keyframe 

extraction, Baykara et al. [16] implemented TinyYOLO for 

efficient multiple object detection, and Lee et al. [17] 

involved cloud servers by using Fast YOLO on local and 
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Faster RCNN on a cloud. However, an error occurred during 

real-time testing, which implies non-effectiveness for drones 

in real-time conditions. Then, to achieve better metrics, in 

different cases, Wiranata et al. [18] performed a padding 

scheme technique to detect vehicles using the AlexNet 

architecture. However, satisfactory accuracy does not meet 

real-time object detection requirements. The architecture 

involves a convolutional neural network (CNN) eight layers 

deep.  

In order to conquer real-time performance, the one-stage 

detectors are used in much previous research, specifically 
deep learning for drone vision in real-time object detection. 

You Only Look Once (YOLO) [19], [20] is one of the 

methods that is widely used because it predicts the object in a 

single step without using region proposals. However, optimal 

accuracy still needs to be explored with all kinds of techniques. 

Because of this fact, exploration of kernel size and stride in 

the YOLOv5s backbone are proposed. The rest of this paper 

is organized as follows. Section II describes the materials and 

the proposed method. The results and discussion are described 

in Section III. Section IV provides some concluding remarks. 

II. MATERIALS AND METHOD 

This section describes the quadcopter, deep learning, and 

transfer learning concepts. The quadcopter is used in this 

research, and the YOLOv5s method is implemented for object 

detection. The basic concept of deep learning with a 

Convolutional Neural Network (CNN) and transfer learning 

for using the method as a pre-trained model is explained.  

A. Quadcopter 

Historically, drones have been widely used for the military, 

which later increased their use in non-military applications. In 

Fig.1, it is shown that UAVs based on their wings, are divided 

into two types, namely Fixed-Wing and Rotary-Wing. The 

easiest example of Fixed-Wing is an airplane. Meanwhile, the 

quadcopter is one of the UAV platform types with Rotary-

wing, which is included in the multi-rotor type [21]. 

Compared to other types of UAVs, the quadcopter is 

relatively small and carries a small payload, around 1.25 kg. 
This type is usually used for mapping and reconnaissance. 

Quadcopter has many types of sensor preferences in the 

camera section. Some of them are RGB cameras, Thermal 

cameras, Multi-spectral cameras, and Visible-light cameras. 

This type of drone can also communicate using WiFi, 

Wireless Radio, and Xbee [2]. 

 

 
Fig. 1  Platform types of UAV. 

The use of a quadcopter for object detection applications 

requires a computing platform installed onboard. The 

platform is able to use Arduino [22], Raspberry Pi, NVIDIA 

Jetson [23], and others. Therefore, several things that need to 

be considered in its implementation are the platform type, 

hardware components, and communications. 

B. Deep Learning-based Object Detection 

Convolutional Neural Network (CNN) is a method that is 
very commonly used specifically for Deep Learning. Deep 

learning is a part of Machine Learning that uses neural 

networks with deep structures to solve learning problems and 

the human brain system. The basic concept of deep learning 

methods is to perform a series of data science processes, from 

collecting datasets and labeling objects to conducting training, 

testing, and validation.  

Datasets concerned with UAVs, such as VisDrone [24], 

MOR-UAV [25], and others, can be used openly to exp their 

objects' characteristics. Naturally, the bird-view taken from 

the drone camera brings up the characteristics of the object 
described in Section I. Then, the training process begins with 

filtering and continues with the convolution process. In the 

convolution process, each neuron receives an input, then 

performs a dot operation with weight and bias. In this process, 

stride and padding are determined. In addition, it involves 

activation functions that are in the hidden layer and output 

layer, which play a role in making decisions. Then in the 

pooling phase, the pixel image is selected using the average 

pooling or max-pooling technique [26]. Therefore, the system 

can perform classification, detection, or recognition. 

Specifically for object detection, there are two types of 

detection schemes: wo-Stage Detector [27], [28] and a One-
Stage Detector. Object detection with a Two-Stage Detector 

scheme has two stages: Region Proposal Network (RPN) and 

Classification Stage. R-CNN, Fast R-CNN, Faster R-CNN, 

and Cascade R-CNN are methods that are already used for 

UAV datasets [29]. In comparison, the One-Stage Detector 

concept can directly provide bounding box and object 

classification because it uses a single fully convolutional 

network. The well-known One-Stage Detector architectures 

are YOLO and SSD [30]. 

In this research, the architecture that has been built on the 

One-Stage Detector is used and then adapted and fine-tuned. 
This process is also known as transfer learning. To use the 

pre-trained model, it is necessary to first identify the 

characteristics of the architecture and the dataset that has been 

trained. In the adaptation process, load models are performed, 

and architectural modifications are made according to the data 

they have. At this stage, the architectural parameters and the 

resulting output need to be considered. For instance, adjusting 

the number of classes that can be detected by the architecture 

to be used. Since this information can be detected in the 

classifier step of architecture, it is possible to adapt the 

classifier to the dataset. Furthermore, retraining is carried out 
with a low learning rate in fine-tuning the selected 

architecture. 

The transfer learning concept needs to ensure the overfit 

condition because the new dataset must apply to the pre-

trained model. In this paper, the concept of transfer learning 

is performed on the YOLOv5s architecture. Therefore, this 

paper will focus on discussing YOLOv5s and the transfer 
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learning process, which specifically refers to the shallowest 

part of the YOLOv5s architecture. 

C. YOLOv5 

In contrast to the sliding window and region-based 

proposal techniques, the YOLO architecture processes entire 

parts of the image during the training and testing stages [19]. 

The basic concept of the YOLO algorithm is to execute the 

algorithm shown in Fig. 2. The input of YOLO is a 
preprocessed image along with the object labeling 

information. Preprocessed images include resizing and 

augmentation if needed. YOLO detects the coordinate of the 

objects with the help of a grid cell system that is set through a 

variable named batch size. 

The cell will later help the system find out the location of 

the object in the image with the help of ������, the result of 

object labeling. These results contain information on the �� 

variable, which indicates the availability of an object in the 

image, 	
  and 	�  are the �  dan �  coordinates to determine 

the center point of the object. Then, 	
  and 	�  define the 

width and height of the bounding box. The variables ��  and 

��  represent class information. If there is no object in the 

image, then the value of �� would be zero, followed by other 

variables. 

YOLOv5 is an extension of YOLOv4 [20]. The YOLOv5 

has several types, specifically YOLOv5n, YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x. The YOLOv5 

implements a cross-stage partial (CSP) model based on a 

dense network (DenseNet), thus making this architecture a 

major contribution to inference speed and model size [31]. 

YOLOv5 is open-source and can be accessed at [32]. The 

training process is executed by involving ������ in the network 

from YOLOv5, which is shown in Fig. 2. The YOLOv5 

architecture is divided into three parts, consisting of the 

backbone, neck, and head. In the backbone section, feature 

extraction is performed by CSPDarknet [33] and spatial 

pyramid pooling (SPP) [34]. 
 

Algorithm 1: Object Detection YOLO Algorithm 

1: 
2: 

Input: preprocessed images ( ������ ), label object 

information (������)  

Output: image with a bounding box (mAP, precision, 
recall) 

3: Step 1 (Divide image into grid cell system) 

4:  Initialize step size on each image (������)  

5: Step 2 (Detect the center of object on each cell) 

6:  Compute y_train (�� , 	
 , 	�, 	� , 	
 , ��, ��) 

10:   Detect object in the image (��) 

11:   Detect height and weight of rectangle bounding box 

(	� , 	
) 

12:   Detect the location of the center point of each object 

in the cell of an image (	
 , 	�) 

13:   Detect the class (�� , ��) 

14: Step 3 (Training Process) 

15:  Compute y_train into Backbone, Neck, and Head 

16: Step 4 (Prediction Process) 

17:  Compute mAP, precision, and recall on each bounding 
box with Non-Max Suppression 

Fig. 2  Object detection of YOLO Algorithm. 

 
Fig. 3  Architecture of YOLOv5. 

 
The role of CSPDarknet is to reduce the amount of 

computation. Where involves Partial Dense blocks, which are 

connected by transition layers. Then on the neck, the image 

feature is combined through several layers to arrive at a 

prediction. Then, in the head section, predictions of bounding 

boxes, class, coordinate, score, and size are made. This 

process is a one-forward pass stage that is not repeated.  

In the concept of transfer learning that can be performed on 

the YOLOv5s architecture, the amount and the characteristics 

of the dataset that has been trained on the YOLOv5 

architecture need to be considered. The YOLOv5 itself has 

been trained using COCO datasets [35] with the number of 

images per class �  1500, 10000 labels per class, and 

variations in images based on time, weather, lighting, angles, 

and different cameras. If the new datasets are in a small 

number of data, where the characteristics are similar to those 

that have been trained in the pre-trained YOLOv5s model, the 

classifier step of the pre-trained model can be adjusted. 

Further, the backbone step can be improved or modified. 

Indeed, the thing to be avoided is small datasets with different 

characteristics from the dataset in the pre-trained YOLOv5s 

model. Therefore, the prediction results will be directly 

obtained through the mean average precision (mAP), 
precision (PR), and recall (RC) parameters with the Non-max 

Suppression technique [36]. 

D.  Kernel Size 

In CNN, the convolutional layer is defined by several 

parameters, such as kernel size, stride, and padding [37]. This 

paper will focus on kernel size and stride to improve 

performance. The kernel is a filter that has a main role in the 

feature map and defines the convolution size. In comparison, 
stride measures the kernel size shift in an image either 

downwards (rows) or to the right (columns). By default, the 
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stride is one. However, this can be adjusted to pass through 

more than one element. Fig. 3 shows the role of the kernel and 

stride in providing the output. In Fig. 4(a), the computation 

output in the lower leftmost cell is 0×0+6 ×1+0×2+0×3=6. 

While the output cell size [37] is obtained by using the 

equation,   

 

�
�� ��������
��

� � �
�� ��������
��

�   (1) 

   

where �,  , !, ", ℎ, and $  are the input image, kernel, padding, 

stride, height, and weight of matrix dimensions, respectively.   

III. RESULTS AND DISCUSSION 

This section explains the proposed method, data 

systematics, and performance parameters. The trained 

YOLOv5s model will be implemented into a quadcopter. 

With this implementation, the quadcopter will perform the 

real-time inference process for object recognition. The data 

systematics used in this paper are described briefly, and the 

performance parameters used for system analysis will also be 

presented. 

A. Proposed Method 

In this subsection, the proposed method is explained. The 

quadcopter has the task of recognizing objects in the form of 

fruits, including dragon fruit, snake fruit, banana, and 

pineapple. For the system to detect and recognize these 

objects, the YOLOv5s method is used in this research. The 

initial process carried out is transfer learning by training on 

the pre-trained model from YOLOv5s. The training used in 

this paper uses a group of training data %�&�, �'. The training 

data will be normalized to a size of 640×640 as input to the 

YOLOv5s backbone. Furthermore, in the backbone, there are 

several convolutional layers and CSP. While each step 

involves a matrix with a size of ℎ � $ � (, where ℎ, $, and ( 

are the height, weight, and class of the object. The 

convolutional layer serves as feature extraction, which will be 

processed in the next layer. 

In this research, the kernel size exploration was carried out 

at the shallowest convolutional layer (shallow convolutional 

layer). The Shallow convolutional layer is the earliest 

convolutional layer. In this layer, the resulting features are 

more representative of the case of object detection and 

recognition. Therefore, in this layer, an exploration of the size 
of the kernel that affects the formation of convolutional 

features is carried out. Furthermore, the output from the layer 

will be processed in the next convolutional layer until the 

process in the backbone (CSPDarknet) is complete. The 

output of the CSPDarknet backbone process is then processed 

at the Path Aggregation Network Layer, which is the neck part 

of the YOLOv5s Architecture. Parameters and processes 

performed in the network layer use the default. From this 

process, the convolution process is then carried out again 

using a convolutional layer with a size of 256×85, 512×85, 

and 1024×85, which will then get the outputs of 20×20×255, 

40×40×255, and 80×80×255, respectively. 

 
(a) 

 
(b) 

Fig. 4  Illustration of (a) convolution process with stride 3 and (b) kernel 

operation. 

 

The model that has been trained is then stored and the 

loading process is carried out on a personal computer (PC) as 

a processor for the quadcopter. Using the API, the connection 
process between a PC and a quadcopter is done through WiFi 

intermediaries. After all these processes run well, then the 

inference process can be carried out in real-time. The 

framework of this research is shown in Fig. 5. 

B. Data Systematic and Requirement System 

In this subsection, data systematics and system 

requirements are explained. The dataset used in this research 

consisted of four classes: dragon fruit, snake fruit, banana, and 
pineapple, which were taken directly. Table 1 represents the 

dataset information used. The dataset that is used is a self-

built dataset, which is taken by the quadcopter. This dataset 

then entered the data augmentation proses in the form of 

random affine (rotation, scale), mix-up, and copy-paste. 

Augmentation with a mix-up is performed by combining 

several classes in one image. In comparison, copy-paste 

applied the same image but changed the focus of taking 

objects on the captured image. 

In addition, for the training process, from augmented 

processing, 2000 data for each class were obtained from the 

training process. With a total of 8000 data, to speed up the 
training process, use the NVIDIA DGX A-100 AI 

supercomputer with a Graphical Processing Unit (GPU) 

capacity of 40GB for each core. 

TABLE I 
NUMBER OF CLASSES IN THE DATASET 

Class Number 

Dragon Fruit  104  
Snake Fruit  197  
Banana   130  
Pineapple  163  
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Fig. 5  Our proposed method framework. 

 

Based on the results of the augmentation data and the type 

of object, this data with pre-trained YOLOv5s has a very 

similar dataset with a large number of datasets. Therefore, the 

purpose of transfer learning is to modify the backbone and 

fine-tune the model to improve performance. Furthermore, for 

the quadcopter used in this research, the DJI Tello 2 is used. 

The DJI Tello 2 is a low-level quadcopter with specifications 

for 5MP photos, 720p30 video, 98×92.5×41mm, and a battery 

capacity of 1190mAh with a voltage of 3.8volt. This 

quadcopter can be used indoors or outdoors and meets the 
quality requirements of laboratory-scale research. The kernel 

sizes used in this research were 5, 6, 7, 8, and 9 with stride 4. 

The illustration of this research is represented in Fig. 6. 

C. Performance Parameter 

To find out and analyze whether the model generated from 

this research is well performed or not, several performance 

parameters such as precision (2), recall (3), and mAP (4) [37] 

are used with the equation, 

 �) *  +,
+,�-, (2) 

 )� *  +,
+,�-. (3) 

 /0� * �
.

∑ 0��
.
�2� , 0� * 3 !&4'54�

6  (4) 

where �), )�, 7�, 8�, 89, 9,  and 0�  is precision, recall, 

true positive, false positive, false negative, number of classes, 

and mean average precision, respectively. For !&4'  is a 

function of precision. Precision is the ratio of TP to the sum 

of TP and FP. 

7�  is a condition where the objects have been labeled 

from the training data in an image, and the location of the 

labels is very similar to the bounding box generated from the 

training/validation/testing results. Meanwhile, 8�  is a 
condition where there are objects labeled from the training 

data in the image, and the labels' location is not the same as 

the bounding box generated from the results of 

training/validation/testing. Then, 89  is a condition where 

objects should be detected, but there are no bounding boxes 

in the image. 

D. Result 

In the first experiment, the kernel size used was 5. Fig.7 
represents the graphic results of the exploration consisting of 

box loss, classification loss, and object loss. The three 

graphics are the result of loss after doing 300 epochs and are 

marked with red and green lines for training and validation, 

respectively. In all three, it is shown that the loss value tends 

to continue to decrease. This graphic shows a very well 

performance. The results of these three graphics also occur in 

Fig. 7-Fig. 12. 

From these results, kernel size 5 has excellent performance 

with precision, recall, and mAP values of 0.981, 0.983, and 

0.988, respectively. While for the second experiment using 
kernel size 6, the results for precision, recall, and mAP were 

0.981, 0.983, and 0.978, respectively. These results can be 

seen in Fig. 8. In Fig. 9, the results of the third experiment 

using kernel size 7 are represented.  

 

 
Fig. 6  Our research implementation in real environment 

 

The results obtained from the experiment are the precision, 

recall, and mAP values are 0.981, 0.983, and 0.988, 
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respectively. For kernel size 8, the results are shown in Fig. 

10, the precision, recall, and mAP values are 0.982, 0.983, 

and 0.984, respectively. In the last experiment, using kernel 

size 9, the values of precision, recall, and mAP were 0.978, 

0.983, and 0.988, respectively. These results can be seen in 

Fig. 11. While using the default YOLOv5s, the precision, 

recall, and mAP results obtained are 0.982, 0.983, and 0.980. 

These results are represented in Fig. 12. Based on the results 

shown in Fig.7-Fig.12, the precision, recall, and mAP values 

show excellent results. The selection of the best kernel is 

based on the mAP score, where the best mAP value is 

generated when the kernel size is 5 and 7, which is 0.988. 

 

 
Fig. 7  Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (5) and stride (4) 

 

 

 
Fig. 8  Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (6) and stride (4) 
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Fig. 9  Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (7) and stride (4) 

 

 

 
Fig. 10  Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (8) and stride (4) 
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Fig. 11  Box loss, classification loss, object loss, performance parameters of precision (P), recall (R) and mAP: kernel size (9) and stride (4) 

 

 
Fig. 12  Box loss, classification loss, object loss, performance parameters of precision (P), recall (R), and mAP: YOLOv5 Default 

 

IV. CONCLUSION 

We have experimented with kernel size to improve object 

detection performance for drones. Kernel size with an odd 
size shows better results than kernel size with an even size. 

While from the experiments carried out in this research, 

kernel sizes 5 and 7 gave optimal results with precision, recall, 

and mAP values of 0.981, 0.983, and 0.988, respectively. 

Compared to the default from YOLOv5s, our proposed 

method has mAP advantage of 0.008, close to 0.01. The 

results of the box loss, classification loss, and object loss 

graphs for kernel sizes 5 and 7 also give better results, with 

the difference between the training and validation lines having 
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a shape similar to a small error gap. Therefore, the graph does 

not represent the overfitting curve. 

Based on the analysis, kernel sizes 5 and 7 have a better 

impact on performance than the default network. 

Modification of kernel size plays a role in the feature map 

process. The YOLOv5s can be optimized for speed detection 

needs. Moreover, this experiment can be expanded by 

experimenting with a more in-depth investigation, such as the 

epoch parameter, padding scheme, kernel design for detecting 

edges, and other optimization techniques.  
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