
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Academic Document Authentication using Elliptic Curve Digital
Signature Algorithm and QR Code

Theophilus Wellem a,*, Yessica Nataliani a, Ade Iriani a
a Faculty of Information Technology, Satya Wacana Christian University, Diponegoro 52-60 Salatiga, 50711, Indonesia

Corresponding author: *theophilus.wellem@uksw.edu

Abstract— Paper-based documents or printed documents such as recommendation letters, academic transcripts, and diplomas are

prone to forgery. Several methods have been used to protect them, such as watermarking, security holograms, or using paper with

specific security features. This paper presents a document authentication system that utilizes QR code and ECDSA as the digital

signature algorithm to protect this kind of document from counterfeiting. A digital signature is a well-known technique in modern

cryptography used for providing data integrity and authentication. The idea proposed herein is to put a QR code in the printed

documents where the QR code includes a digital signature. The signature can later be authenticated using the proposed system by

uploading the document for authentication or scanning the document's QR code. The proposed system is particularly developed for

digital signature generation and verification of students' final project approval documents as the case study. In traditional settings, the

approval form is typically signed directly by the student's advisor dan co-advisor using handwritten signatures. However, using the

conventional handwritten signature, the signature on the approval form can be falsified. Therefore, a digital signature generation and

verification system is implemented herein to avoid handwritten signature falsification. The advisors can use this system to sign the

approval form using a digital signature instead of a handwritten one. The signature is stored in a QR code and is generated using

ECDSA with SHA-256 as the hash function. The proposed system is evaluated using documents (i.e., approval forms) with genuine and

forged QR codes. The evaluation results showed that the system could verify the authenticity of the approval forms, which contain

genuine QR codes. The approval forms that contained forged QR codes were correctly identified.

Keywords— Digital signature; QR code; elliptic curve cryptography; authentication.

Manuscript received 29 Mar. 2022; revised 18 Apr. 2022; accepted 5 Jun. 2022. Date of publication 30 Sep. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Handwritten signatures are generally used on letters,
documents, diplomas, and so forth to prove their authenticity.
If someone has signed a document, it means they have
approved the paper's contents. For digital data or documents,
cryptographic signatures, widely known as digital signatures,
can be applied to protect the integrity of the documents and
provide authentication [1]. A digital signature is not a
digitized handwritten signature scanned with a document
scanner or created with an electronic pen. Furthermore, a
digital signature is also not a signature replaced with a code
(usually a QR code), which is currently used in several
documents in Indonesia, such as Household Registration
cards, birth certificates, government letters, and so on. In
cryptography and data communication, a digital signature is
several bytes (e.g., 64 bytes) of data generated and appended
by a signatory (or sender) to the original message to provide

authenticity. The signature values depend on the content and
the sender of the message.

With the COVID-19 pandemic still in progress and many
are working from home, documents to be approved and signed
by managers, professors, lecturers, and others are sent
electronically via emails or messenger applications (e.g.,
WhatsApp, Telegram). The signature herein can be a
handwritten signature that is scanned using a document
scanner, then pasted on the document, or a signature added to
the document with an electronic pen or an online signature
(e.g., SignNow). Both types of signatures have a low level of
security because unauthorized persons can forge them.
Several schemes of signature have been proposed in the
literature [2]–[4] to solve this problem, and one of them is to
use a digital signature combined with barcodes such as QR
codes or other appropriate barcode models [5]–[7].

This paper proposes a system for academic document
authentication with students' final project approval documents
adopted as the case study. The proposed system uses QR

667

JOIV : Int. J. Inform. Visualization, 6(3) - September 2022 667-675

codes that contain digital signatures to replace the
conventional handwritten signature of the students' advisors
on the approval form. Furthermore, the system can also be
used to verify and validate the signature in the documents.
Therefore, the system can generate the digital signature,
encode the digital signature to create the QR code, and verify
the digital signature inside the QR code on the students'
documents. The Elliptic Curve Digital Signature Algorithm
(ECDSA) is chosen as the digital signature algorithm used in
the proposed system.

Some previous research on the use of digital signatures
with QR codes are described below. Rochman et al. [8]
applied a digital signature with a QR code to validate the
student's course plan and transcript. They used digital
signatures and QR codes for document validation with the
RSA algorithm for encrypting the message digest. The
message digest is generated using the RIPEMD-128 hash
function. Apriansyah et al. [9] applied QR codes in the
attendance system using Reed Solomon codes for the error
correction. Nuraeni et al. [10] applied digital signatures to the
diploma legalization process and used digital signatures for
document validation. No QR code was used in their system.
Ardhianto and Wakidah [11] used QR codes for diploma
authentication without a digital signature. Suratma and Azis
[12] applied a digital signature with a QR code to validate
goods retrieval documents. The AES algorithm generates a
digital signature, and the QR code contains a digital signature
resulting from the document's encryption. Lewis and Thorpe
[13] used QR codes for authenticating motor insurance
documents. Pal and Kumar [14] applied a QR code to design
smart documents using digital signatures and blockchain. In
their system, the digital signature is embedded in a QR code
for document verification purposes. Farooq et al. [15] applied
the ECDSA for the authentication mechanism between smart
meters in an advanced metering infrastructure of a smart grid.
Teraura et al. [16] applied the ECDSA algorithm with QR
code for document authentication. The data area of the QR
code is divided into three parts: the public data area
(unencrypted data), the private data area (encrypted data), and
the digital signature area. Unlike the previous research, the
research in this paper utilized the ECDSA for signature
generation and verification to validate students' final project
approval documents. Furthermore, the digital signature is
embedded in the QR code. It can be authenticated by the
proposed system using a QR code scanner (specifically
developed scanner) or uploading the document to the system.

II. MATERIALS AND METHOD

The research uses a qualitative method consisting of data
collection, analysis and interpretation, and validation steps.
The data collection step is used to obtain the format of the
students' final project approval form and the standard
operating procedure for students' final project. Data analysis
and interpretation steps are used to identify the requirements
to implement the system, study the QR code encoding and
decoding methods, hash functions, and suitable cryptographic
algorithms to be used in the system. Finally, the data
validation step is used to verify the digital signature and the
documents.

The digital signature is a well-known technique in modern
cryptography used for providing data integrity and

authentication. Currently, there are three digital signature
algorithms standards: Digital Signature Algorithm (DSA),
RSA Signature Algorithm, and ECDSA [17].

A. Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Cryptography (ECC) is a public-key
cryptography scheme proposed by Neal Kobiltz [18] and
Victor Miller [19] independently in the 1980s. The approach
is based on the algebraic structures of elliptic curves over
prime GF(p) and binary finite fields GF(2m). ECC is attractive
because it offers the same level of security as the RSA
algorithm with smaller key sizes. ECC is applied to the typical
tasks in public-key cryptography, such as key exchange
(Elliptic Curve Diffie-Hellman or ECDH) and digital
signatures (ECDSA). The ECDSA algorithm can be described
as follows.

Alice and Bob agree on two integers (a dan b), a prime
number (p) in the elliptic curve equation y2 = x3 + ax + b (mod
p), an elliptic group, and a base point (B(xB,yB)) selected from
the elliptic group [20]. The procedure for generating the
public and private keys on ECDSA is as follows.

Alice generates her private and public key in the following
way:

 Alice selects an integer x, as the private key.
 Alice calculates PA = x.B, as the public key.

Bob generates his private and public key in the following
way:

 Bob selects an integer y, as the private key.
 Bob calculates PB = y.B, as the public key.

The procedure for generating the digital signatures with
ECDSA is as follows.

 Alice selects a random integer k, on the interval [1, p –
1].

 Alice calculates k.B = (x1,y1) and r = x1 mod p. If r = 0,
then return to Step a.

 Alice calculates k-1 mod p.
 Alice calculates the hash value of M, e = H(M), where

H is the hash function.
 Alice calculates s = k-1 (e + x.r) mod p. If s = 0, the

return to Step a.
The signature for message M is the pair (r,s). Alice sends

both M and (r,s) to Bob.
Meanwhile, the digital signature verification procedure

with ECDSA is as follows.
 Bob verifies that r and s are in the interval [1, p – 1].
 Bob retrieves Alice's public key, PA.
 Bob calculates the hash value of M, e = H(M).
 Bob calculates w = s-1 mod p.
 Bob calculates u1 = ew mod p dan u2 = rw mod p.
 Bob calculates (x1,y1) = u1.B + u2.PA.
 Bob calculates v = x1 mod p.

If v = r, then the signature is valid.

B. Quick Response Code

A Quick Response (QR) code is a 2D barcode initially
designed for Japan's automotive industry by Denso Wave in
1994 [21]. The code then was standardized by ISO in 2000,
and the current standard for QR codes is ISO/IEC 18004:2015.
An example of a QR code is shown in Fig. 1. A QR code can
be generated for URL, vCard, text, Wi-Fi access, and so on.
The QR code has four standard input encoding modes:

668

numeric, alphanumeric, byte/binary, and Kanji, as listed in
Table I. The code and character for the alphanumeric
encoding mode are given in Table II.

Fig. 1 Example of a QR code for the message "Hello World"

TABLE I
ENCODING MODE [22]

Encoding

mode

Bits/char Character

Numeric 10-bit per three
characters

0-9 (10 characters)

Alphanumeric 11-bit per two
characters

0-9, A-Z, space, $, %, *,
+, -, ., /, : (45 characters)

Byte/biner 8-bit per
character

ISO 8859-1 (256
characters)

Kanji 13-bit per
character

Shift JIS X 0208

TABLE II
ALPHANUMERIC CHARACTER CODE [23]

Code Character Code Character

00 0 23 N

01 1 24 O

02 2 25 P

03 3 26 Q

04 4 27 R

05 5 28 S

06 6 29 T

07 7 30 U

08 8 31 V

09 9 32 W

10 A 33 X

12 C 34 Y

13 D 35 Z

14 E 36 space

15 F 37 $

16 G 38 %

17 H 39 *

18 I 40 +

19 J 41 -

20 K 42 .

21 L 43 /

22 M 44 :

In data encoding, the bitstream sequence consists of a mode

indicator, a message length indicator, and a message. The
mode indicator is an indicator for the encoding mode type,
shown in Table III, while the message length indicator is an
indicator for the message length in bits. Each version of the
QR code with a different encoding mode has an additional
message length indicator, as shown in Table IV. QR code has
various versions, depending on the size, from Version 1 to
Version 40. For example, Version 1 consists of 21x21
modules, Version 2 consists of 25x25 modules, and Version

40 have 177x177 modules. The black modules represent the
value of 1, while the white modules represent the value of 0.

As a kind of data storage, QR code also employs error
correction code to correct data errors in the decoding process
(by a QR code scanner or reader). The error correction codes
used in QR codes are Reed-Solomon codes, BCH codes (for
format information), and Golay codes (for Format
information). The error correction level consists of four levels,
i.e., L, M, Q, and H. The estimated error correction capability
of each correction level is described in Table V.

TABLE III
INDICATOR MODE [23]

Indicator Information

0001 Numeric encoding

0010 Alphanumeric encoding

0100 Byte encoding

1000 Kanji encoding

0011 Structured append mode

0111 Extended channel interpretation mode

0101 FNC1 encoding (position 1)

1001 FNC1 encoding (position 2)

0000 The end of message/terminator

TABLE IV

MESSAGE LENGTH INDICATOR (NUMBER OF BITS) [23]

Encoding mode Version

1-9

Version

10-26

Version

27-40

Numeric 10 12 14

Alphanumeric 9 11 13

Byte/biner 8 16 16

Kanji 8 10 12

TABLE V

QR CODE ERROR CORRECTION LEVEL [22]

Correction Level Error Correction Ability

L (low) 7% of codewords can be returned

M (medium) 15% of codewords can be returned

Q (quartile) 25% of codewords can be returned

H (high) 30% of codewords can be returned

The number of data stored in a QR code depends on the
input data type, version, and error correction level. The higher
the error correction level, the less the data storage capacity.
Version 1 with error correction level H has the least data
storage capacity, while version 40 with error correction level
L has the largest storage capacity. The total capacity of
storage for version 1-H (version 1 with error correction level
H), 15-Q (version 15 with error correction level Q), 25-M
(version 25 with error correction level M), and 40-L (version
40 with error correction level L), are shown in Table VI.

TABLE VI

SAMPLE OF MAXIMUM CAPACITY FOR 1-H, 15-Q, 25-M, 40- L [9]

Encoding mode Maximum Number of Characters

1-H 15-Q 25-M 40-L

Numeric 17 703 2,395 7,089

Alphanumeric 10 426 1,451 4,296

Byte/biner 7 292 997 2,953

Kanji 4 180 614 1,817

669

III. RESULTS AND DISCUSSION

This section presents the design and implementation results
of the proposed system. First, the description of the signature
generating and verifying using ECDSA is described, followed
by an example of QR code encoding process. Finally, the
implementation of the proposed system is described along
with evaluation results

A. Signature Generation and Verification

The flowcharts for generating and verifying a digital
signature with QR code and ECDSA are shown in Figs. 2 and
3, respectively.

Fig. 2 Flowchart of the generating digital signature in the proposed system

The process of generating the digital signature is described

below.
Input: message.
1. Select domain parameters used in the signature process

(e.g., curve name, hash function).
2. Generate the public and private keys using the domain

parameters from Step 1.

3. Hash the message using a hash function (e.g., SHA-256)
to obtain the hash value.

4. Generate the digital signature using the private key from
Step 2 and the hash value from Step 3.

5. Append the digital signature obtained in Step 4 to the
message.

6. Generate a QR code for the result from Step 5.
7. Put the QR code into the document.
Output: A document with a QR code that contains the
message and digital signature.

The process of verifying the digital signature is described

below.
Input: QR code or document with QR code.
1. Scan the QR code or upload the document (in .pdf) for the

decoding process to obtain the message and the digital
signature.

2. Hash the message (obtained from Step 1) using the same
hash function in the signature generation process to get the
hash value.

3. Use the public key and the hash value (obtained from Step
2) to verify the digital signature (obtained from Step 1).

Output: Signature verification result (valid or not valid).

Fig. 3 Flowchart of the verifying digital signature in the proposed system

An example of the output document generated by the

proposed system is shown in Fig. 4. The QR code contains the
digital signature generated using ECDSA.

670

Fig. 4 Example of the output document

B. QR code Encoding and Decoding

A QR code is generated by a QR code encoder. An example
of QR code encoding is presented below, and a short message
is used to simplify the presentation. The message to be
encoded is FTI-UKSW, which consists of alphanumeric data
with a length of 8, and a high error correction level is selected.
The QR code generated for this short message with a high
error correction level. For this short message, the QR code's
version generated is Version 1. Following the QR code
specification, a Version 1 QR code with a high error
correction level (1-H), the total number of codewords (n) =
26, the number of codewords for the message (k) = 9, and the
number of error correction codewords (n-k) = 17. The
calculation for the FTI-UKSW encoding process is described
in Table VII.

TABLE VII

QR CODE ENCODING CALCULATION EXAMPLE

No Tasks Results

1 Break the message every two characters. According

to Table 1, the alphanumeric encoding mode has a

format of 11-bit per two characters.

FT I- UK SW

2 Code each character according to Table 2. 15 29 18 41 30 20 28 32

3 Multiply the first number by the constant 45, then add
it by the second number.

(45*15) + 29 =
704

(45*18) + 41 =
851

(45*30) + 20 =
1370

(45*28) + 32 =
1292

4 Form in 11-bit binary format. According to Table 1,

the alphanumeric encoding mode has a format of 11-

bit per two characters.

01011000000 01101010011 10101011010 10100001100

5 Add a terminator at the end of the message with

"0000", according to Table 3.

01011000000 01101010011 10101011010 10100001100 0000

6 Add message length = 8 at the beginning of the
codewords. According to Table 4, the number of bits

to represent the message length in alphanumeric

encoding mode is 9 bits, and in binary 9-bits, eight is

000001000.

000001000 01011000000 01101010011 10101011010 10100001100 0000

7 Add the alphanumeric encoding mode, namely

"0010", at the beginning of the codewords, according

to Table 3.

0010 000001000 01011000000 01101010011 10101011010 10100001100 0000

8 Group into 8-bit. 00100000 01000010 11000000 01101010 01110101 01101010 10000110 00000

9 Add "0" at the end of the codewords (zero padding)
so that each block becomes 8-bit.

00100000 01000010 11000000 01101010 01110101 01101010 10000110
00000000

10 Add "11101100" and "00010001" at the end of the

codewords alternately so that the new codewords are
nine blocks long.

00100000 01000010 11000000 01101010 01110101 01101010 10000110

00000000 11101100

11 Convert each block in decimal. 32 66 192 106 117 106 134 0 236

12 The message is formed into a message polynomial.

The result is m(x).

m(x) = 32x8 + 66x7 + 192x6 + 106x5 + 117x4 + 106x3 + 134x2 + 0x1 + 236

13 Multiply m(x) with x17. The result is m’(x). m’(x) = 32x25 + 66x24 + 192x23 + 106x22 + 117x21 + 106 + 134x19 + 0x18 + 236x17

14 Determine the polynomial generator, g(x) according
to the QR code specification.

g(x) = x17 + 119x16 + 66x15 + 83x14 + 120x13 + 119x12 + 22x11 + 197x10 + 83x9 +
249x8 + 41x7 + 143x6 + 134x5 + 85x4 + 53x3 + 125x2 + 190x + 79

15 Compute r(x) = m’(x) mod g(x). r(x) = 211x16 + 101x15 + 197x14 + 180x13 + 243x12 + 0x11 + 68x10 + 55x9 + 103x8 +

208x7 + 225x6 + 200x5 + 87x4 + 135x3 + 223x2 + 190x + 213
16 Concatenate the coefficient of m(x) with the

coefficient of r(x).

32 66 192 106 117 106 134 0 236 211 101 197 180 243 0 68 55 103 208 225 200

87 135 223 190 213

17 Convert to 8-bit binary. The final codewords will be

generated into QR code.

00100000 01000010 11000000 01101010 01110101 01101010 10000110

00000000 11101100 11010011 01100101 11000101 10110100 11110011
00000000 01000100 00110111 01100111 11010000 11100001 11001000

01010111 10000111 11011111 10111110 11010101

18 QR code result.

671

An example of the QR code generated by the proposed
system is shown in Fig. 5. Using a high error correction level
(H), the QR code version is 12 (65x65 modules). It can store
158 data codewords and 308 error correction codewords. In
contrast, the QR code version is 7 (45x45 modules) if a low
error correction level (L) is used. The QR code can store 156
data codewords and 40 error correction codewords. The
content of the QR code is shown below.
672000001|Carol Dave|67001|2021-11-20
14:20:46|MEUCIQDZRNbIOpQf99WYUykha73/0U5
WUUGrwar7rM8PQIgXQwIgbP4NKj31khJNJdeZbJL
kq95S7i876+afu1gdhCXYlTc=

(a)

(b)

Fig. 5 Example of QR code with error correction level: (a) High and (b) Low

A QR code is typically read using a scanner that decodes

the QR code for the decoding process. The decoding process
starts with recognizing the black/white modules, decoding the
format information, determining the version, and releasing the
masking [23]. Next, the codewords are processed for error
detection and correction. If there are errors in the codewords,
the errors are corrected. Otherwise, the data part in the
codewords is extracted as the output. QR code encoder and
decoder libraries are widely available in various programming
languages to simplify software development that requires QR
code processing. The phpqrcode library [24] and ZXing
library [25] are used in the proposed system to implement the
encoder and the decoder, respectively.

C. System Implementation

The proposed system is designed and implemented as a
web-based application using PHP programming language.
The system users are categorized as Administrator, Advisor,
and Student. The administrator has the task of managing all
data and users in the system, including verifying of signature
in students' documents. Users with the role of Advisors can
view and sign the documents submitted by students. Finally,
users with the role of Students can input their final project
data and submit their documents for approval. The workflow
of the proposed system for signature generation is as follows.
1. The administrator creates user accounts for advisors and

students.
2. When a student needs his or her advisor's signature, the

student inputs the title of the final project and selects the
advisor in the system.

3. If the advisor is accessing the system for the first time, the
system will generate a public key and a private key
automatically, then these keys will be stored in the system
to be used in the future.

4. The system generates a message (P) containing the student
number, name, advisor ID, signature date, and timestamp.

5. Sign the message (P) by executing the sign function. The
private key is used as one of the parameters in the sign
function. This step creates a digital signature (S).

6. S is appended to P to create a string T. The system then
generates a QR code for T.

7. The system put the generated QR code to the approval
form.

8. The student can now download the signed approval form.

The digital signature generation process is described below.
Students log in to the system, input their final project data,

and select their advisor(s), as shown in Fig. 6.

Fig. 6 Student's portal to input the paper title and choose the advisor

When an advisor logs in, the system displays the student

data that requires the advisor's signature, as shown in Fig. 7.

Fig. 7 Advisor's portal that displayed signature's request from the student

The advisor can then sign the document. The digital

signature and the QR code generation are executed in this
step—the advisor inputs the password to sign the document,
as shown in Fig. 8.

Fig. 8 Advisor's portal to sign the document

The implementation of ECDSA in this system uses

functions from the OpenSSL library [26]. The
openssl_get_curve_names() function is used to

obtain a list of curves supported by OpenSSL. The curve

adopted herein is prime256v1 (NIST P-256). After

selecting the curve, the process for generating the private key

and the public key is executed (the openssl_pkey_new()

and openssl_pkey_get_details() functions are

used here). The generated private key can be stored in a .pem

file or a .der file and loaded from the file when used, while

672

the public key is generally stored in the form of a digital

certificate or can be stored in a .pem file. An example of a

private key and a public key is as follows:
-----BEGIN EC PRIVATE KEY-----
MHcCAQEEILwcMVMEyC/cajYjaPXbxZRhqStlK
xs0jBvvh7JBDBD7oAoGCCqGSM49
AwEHoUQDQgAEEvZShMEplL5yx+vFodjO+cKiy
qf/5FS4RL9sSB2SpM0FgrTPTRjd
Ebqau1a+tgvh3cvcohwf0OfKP7R2koFBmA==
-----END EC PRIVATE KEY-----

-----BEGIN PUBLIC KEY-----
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEEv
ZShMEplL5yx+vFodjO+cKiyqf/
5FS4RL9sSB2SpM0FgrTPTRjdEbqau1a+tgvh3c
vcohwf0OfKP7R2koFBmA==
-----END PUBLIC KEY-----

After the key generation process, the digital signature is
generated using the specified parameters (domain parameters),
the private key, and the hash value. An example of the
resulting digital signature (in base64 encoding format) is
shown below.

MEUCIQDZRNbIOpQf99WYUykha73/0U5WUUGrwa
r7rM8PQIgXQwIgbP4NKj31khJNJdeZbJLkq95S
7i876+afu1gdhCXYlTc=

The student can now log in to the system and observe that

the signature request has been completed, as shown in Fig. 9.
Finally, the student can download the signed approval form
and put it in the final project document. An example of the
signed document is shown in Fig. 10.

Fig. 9 Student's portal when the signature request has been completed

Fig. 10 Signed approval form example

The administrator performs the digital signature
verification process by uploading the approval form to the
system. Verification is carried out to check the validity of the
signatures. The workflow for signature verification is as
follows.
1. The administrator uploads the approval form (in .pdf).
2. The system decodes the QR code into a string T, consisting

of the message and the digital signature.
3. The system separates T into a message (P) and a digital

signature (S).
4. The system verifies the digital signature (S) by executing

the verify function. The public key is used as one of the
parameters in the verify function.

5. If the call to verify function returns 1, the digital signature
is authentic (valid).

The verification part on the administrator's portal is shown
in Fig. 11. Fig. 12 shows the verification result for the
approval form shown in Fig. 10, which is valid.

Fig. 11 Administrator's portal to verify the document

Fig. 12 Valid verification

D. System Testing and Evaluation

As shown in the previous section, an example is given for
the generation and verification of digital signatures for a
student named Carol Dave (M1) with two supervisors, namely
Prof. Dr. Alice (P1) and Dr. Bob (P2). In the system
evaluation, four scenarios were tested.

1) Scenario 1 (data integrity): After M1 got the approval
form, for some reason, the form was damaged. M1 scans the
QR code from the two advisors to get the message and digital
signature contained in the QR code. M1 then generates the
QR code from P1 and P2 using another QR code generator
(e.g., the one available on the internet). After that, M1 creates
a new approval form and puts the new QR code on the M1's
approval form.

Result: The QR code of P1 on the original approval form is
shown in Fig. 13(a). It contains
672000001|CarolDave|67001|2021-11-20
14:20:46|MEUCIQDZRNbIOpQf99WYUykha73/0U5
WUUGrwar7rM8PQIgXQwIgbP4NKj31khJNJdeZbJL
kq95S7i876+afu1gdhCXYlTc=

The QR code of P1 from another QR code generator is
shown in Fig. 13(b). It contains
672000001|Carol Dave|67001|2021-11-20
14:20:46|MEUCIQDZRNbIOpQf99WYUykha73/0U5

673

WUUGrwar7rM8PQIgXQwIgbP4NKj31khJNJdeZbJL
kq95S7i876+afu1gdhCXYlTc=

(a)

(b)

Fig. 13 QR code of P1: (a) original P1; (b) from another QR code generator

Both QR codes contain the same messages and digital
signatures. The verification result for the M1 new approval
form is valid, as shown in Fig. 14. Therefore, if there are no
changes to both the message and digital signature, the
validation will be successful, even though the QR code is
generated with other generators. Note that the QR code
encoder in the proposed system is not equipped with its own
certificate (public key) and private key. Thus, any QR code
encoder can re-create the QR code as long as the message and
digital signature are not changed. The development of a
certified encoder/decoder is left for future work.

Fig. 14 Success validation for Scenario 1

2) Scenario 2 (authentication, forged signature): After
M1 gets the approval form, another student, Eve Adam (M2),
who is also P1's student, takes the QR code of P1 from the
M1's approval form. M2 then creates a new approval form by
himself and puts the QR code of P1 on his approval form. In
this scenario, M2 tries to forge the approval form using a QR
code obtained from another student with the same advisor.

Result: The QR code of P1 on M2's approval form contains
672000001|Carol Dave|67001|2021-11-20
14:20:46|MEUCIQDZRNbIOpQf99WYUykha73/0U5
WUUGrwar7rM8PQIgXQwIgbP4NKj31khJNJdeZbJL
kq95S7i876+afu1gdhCXYlTc=

The verification result for M2's approval form is failed
(shown in Fig. 15) because the message on the QR code has
M1's identity. In contrast, the message in the newly created
approval form has M2's identity.

Fig. 15 Failed validation for Scenario 2

3) Scenario 3 (authentication, forged signature with newly

generated QR code): After M1 gets the approval form, M2,
who is also P1's student, replaces the student ID and name

(obtained by scanning the QR code of P1) with his identity
and generates a new QR code. M2 then creates a new approval
form and puts his version of P1's QR code on the approval
form. This scenario is similar to that of Scenario 1. However,
a new QR code is generated in this scenario. M2 tries to forge
the approval form using his version of P1's QR code.

Result: The new version of P1's QR code on M2's approval
form with M2's identity is shown in Fig. 16. It contains
672000002|Eve Adam|67001|2021-11-20
14:20:46|MEUCIQDZRNbIOpQf99WYUykha73/0U5
WUUGrwar7rM8PQIgXQwIgbP4NKj31khJNJdeZbJL
kq95S7i876+afu1gdhCXYlTc=

Fig. 16 QR code of P1 with M2's identity as the message

The message part on the QR code is replaced with the M2's

identity. The verification result for M2's approval form failed,
as shown in Fig. 17, because the digital signature does not
match the message.

Fig. 17 Failed validation for Scenario 3

4) Scenario 4 (forged approval form): M2 is not registered
in the database but has an approval form (created by himself).
The verification result for M2's approval form is failed, as
shown in Fig. 18, because M2's data are not found in the
database.

Fig. 18 Data not found for Scenario 4

IV. CONCLUSION

This paper proposes the usage of QR codes and ECDSA
for document authentication to prevent signature or document
forgery. A system is implemented for students' final project
document authentication using a case in academic settings.
The system was evaluated using both genuine and false QR
code signatures. Based on the evaluation and testing results,
it is found that: (1) As long as there are no changes to the
message and digital signature, the verification results are valid
even though another QR code generator generates the QR
code. This can be improved using a certified QR code encoder

674

and decoder, (2) If the message on the QR code is not the same
as the message on the document, then the validation is failed,
and (3) If the message on the QR code does not match with
the digital signature, then the validation is failed. The
proposed method and system can be extended for any
documents that require handwritten signatures. A study and
implementation of a certified QR code encoder and decoder
is a potential future work. Using a certified encoder and
decoder can improve the security and reliability of the system.

ACKNOWLEDGMENT

This research is funded by the Office of the Vice Rector V
for Research and Community Service, Satya Wacana
Christian University, with Decree Number
196/Pen./Rek./V/2021.

REFERENCES

[1] N. Dlamini, S. Mthethwa, and G. Barbour, "Mitigating the Challenge

of Hardcopy Document Forgery," 2018 Int. Conf. Adv. Big Data,

Comput. Data Commun. Syst. icABCD 2018, Sep. 2018, doi:
10.1109/ICABCD.2018.8465401.

[2] A. Singhal and R. S. Pavithr, "Degree Certificate Authentication using
QR Code and Smartphone," Int. J. Comput. Appl., vol. 120, no. 16, pp.
38–43, 2015.

[3] H. A. Ahmed and J.-W. Jang, "Higher Educational Certificate
Authentication System Using QR Code Tag," Int. J. Appl. Eng. Res.,
vol. 12, no. 20, pp. 9728–9734, 2017.

[4] S. K. Thamer and B. N. Ameen, "A New Method for Ciphering a
Message Using QR Code," Comput. Sci. Eng., vol. 6, no. 2, pp. 19–24,
2016.

[5] R. Focardi, F. L. Luccio, and H. A. M. Wahsheh, "Usable
cryptographic QR codes," Proc. IEEE Int. Conf. Ind. Technol., vol.
2018-February, pp. 1664–1669, Apr. 2018, doi:

10.1109/ICIT.2018.8352431.
[6] A. Wibiyanto and I. Afrianto, "QR code and transport layer security

for licensing documents verification," IOP Conf. Ser. Mater. Sci. Eng.,

vol. 407, pp. 1–8, 2018, doi: 10.1088/1757-899X/407/1/012069.
[7] M. A. Sadikin and S. U. Sunaringtyas, "Implementing digital signature

for the secure electronic prescription using QR-code based on android

smartphone," Proc. - 2016 Int. Semin. Appl. Technol. Inf. Commun.

ISEMANTIC 2016, pp. 306–311, Mar. 2017, doi:
10.1109/ISEMANTIC.2016.7873856.

[8] F. F. Rochman, I. K. Raharjana, and T. Taufik, "Implementation of QR
Code and Digital Signature to Determine the Validity of KRS and
KHS Documents," Sci. J. Informatics, vol. 4, no. 1, pp. 8–19, May

2017, doi: 10.15294/SJI.V4I1.7198.
[9] A. Apriansyah, F. Fauziah, and N. Hayati, “Implementasi Algoritma

Reed Solomon Codes Pada Proses Encoding QR Code pada Sistem

Absensi,” J. InfomediaTeknik Inform. Multimed. Jar., vol. 4, no. 2, pp.

75–80, 2019, doi: 10.30811/JIM.V4I2.1572.
[10] F. Nuraeni, H. Agustin, I. M. Muharam, T. Informatika, and T.

Tasikmalaya, “Implementasi Tanda Tangan Digital Menggunakan

RSA dan SHA-512 Pada Proses Legalisasi Ijazah,” in Konferensi

Nasional Sistem Informasi (KNSI) 2018, Mar. 2018, pp. 864–869.
[11] E. Ardhianto and N. Wakhidah, “Pengembangan Metode Otentikasi

Keaslian Ijasah dengan Memanfaatkan Gambar QR Code,” J.

Transform., vol. 13, no. 2, pp. 35–41, Jun. 2016, doi:
10.26623/TRANSFORMATIKA.V13I2.325.

[12] A. Suratma, A. G. P. Suratma, and A. Azis, “Tanda Tangan Digital
Menggunakan QR Code dengan Metode Advanced Encryption
Standard,” Techno (Jurnal Fak. Tek. Univ. Muhammadiyah

Purwokerto), vol. 18, no. 1, pp. 59–68, Jun. 2017, doi:
10.30595/techno.v18i1.1482.

[13] O. Lewis and S. Thorpe, "Authenticating Motor Insurance Documents

using QR Codes," Apr. 2019, doi:
10.1109/SOUTHEASTCON42311.2019.9020614.

[14] K. Pal and C. R. S. Kumar, "QR Code Based Smart Document

Implementation Using Blockchain and Digital Signature," Adv. Intell.

Syst. Comput., vol. 1174, pp. 449–465, 2021, doi: 10.1007/978-981-
15-5616-6_32.

[15] S. M. Farooq, S. M. Suhail Hussain, and T. S. Ustun, "Elliptic Curve
Digital Signature Algorithm (ECDSA) Certificate Based
Authentication Scheme for Advanced Metering Infrastructure," 2019

Innov. Power Adv. Comput. Technol. i-PACT 2019, Mar. 2019, doi:
10.1109/I-PACT44901.2019.8959967.

[16] N. Teraura, I. Echizen, and K. Iwamura, "A QR Symbol with ECDSA

for Both Public and Secret Areas using Rhombic Sub-cells," 2020.
[17] C. F. Kerry and P. D. Gallagher, "Digital Signature Standard (DSS),"

2013. doi: 10.6028/NIST.FIPS.186-4.

[18] N. Koblitz, "Elliptic Curve Cryptosystems," Math. Comput., vol. 48,
no. 177, pp. 203–209, 1987.

[19] V. S. Miller, "Use of Elliptic Curves in Cryptography," Adv. Cryptol.,

vol. 218, pp. 417–426, 1986.
[20] R. Munir, Kriptografi, 1st ed. Bandung: Informatika, 2019.
[21] D. Wave, “QR Code development story.” [Online]. Available:

https://www.denso-wave.com/en/system/iot/support/. [Accessed: Mar.
02, 2022].

[22] E. F. Nurdiansyah and I. Afrianto, “Implementasi QR Code Sebagai

Tiket Masuk Event dengan Memperhatikan TIngkat Koreksi
Kesalahan,” J. Teknol. dan Inf., vol. 7, no. 2, pp. 25–44, Sep. 2017,
doi: 10.34010/JATI.V7I2.491.

[23] ISO/IEC 18004:2015, "ISO - ISO/IEC 18004:2015 - Information
technology — Automatic identification and data capture techniques —
QR Code bar code symbology specification," 2015. .

[24] "PHP QR Code - QR code generator, an LGPL PHP
library.". [Online]. Available: https://phpqrcode.sourceforge.net/.
[Accessed: Mar. 02, 2022].

[25] "GitHub - zxing/zxing: ZXing ('Zebra Crossing') barcode scanning
library for Java, Android.". [Online]. Available:
https://github.com/zxing/zxing. [Accessed: Mar. 02, 2022].

[26] "OpenSSL: Cryptography and SSL/TLS Toolkit.". [Online]. Available:
https://www.openssl.org/. [Accessed: Mar. 02, 2022].

675

