
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

An Android Malware Detection System using a Knowledge-based
Permission Counting Method

Sun-A Lee a, A-Reum Yoon a, Ji-Won Lee a, Kwangjae Lee a,*
a Department of Information Security Engineering 31, Sangmyeongdae-gil, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31066,

Republic of Korea

Corresponding author: *begleam@smu.ac.kr

Abstract— As the number of damage cases caused by malicious apps increases, accurate detection is required through various detection

conditions, not just detection using simple techniques. This paper proposes a knowledge-based machine learning method using authority

information and adding its usage counting features. This method classifies training apps and malicious apps through machine learning

using permission features in manifest.xml of Android apps. As a result of the experiment, accuracy, recall, precision, F1 score are

99.01%, 97.70%, 100.0%, 99.01%, respectively. Since recall is higher than other indicators, it accurately predicts malicious apps as

malicious. In other words, the proposed system effectively prevents the distribution of malicious apps. As the number of harmful apps

develops daily, it was determined in this study that it is critical to detect malicious apps using a machine learning model effectively.

However, utilizing permission alone as a criterion for distinguishing between legitimate and malicious apps is insufficient to detect all

harmful apps that emerge from new attack technologies. Combining feature information efficient in detecting malicious apps, such as

APIs that access and control sensitive data from users or adding other detection criteria will likely improve the detection model's

accuracy. According to the upcoming study, recent attackers have used obfuscation to disguise harmful code and hinder static analysis

of rogue programs. It is important to consider how to detect harmful apps that are obfuscated in this way.

Keywords—Machine learning; android malware detection; permission counting; knowledge-based analysis.

Manuscript received 22 Oct. 2021; revised 17 Nov. 2021; accepted 21 Dec. 2021. Date of publication 31 Mar. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

As the use of smartphones has increased recently, damage
from malicious apps is also increasing. Malicious apps refer
to malicious software (Malware) that performs malicious
functions by disguising it as a normal app on a smartphone
[1], [2]. According to the Korea Internet & Security Agency
(KISA), malicious apps increased 5.5 times from 1,635 in
2016 to 9,051 in 2019 and are being used for intelligent crimes
[3]. Additionally, according to the EST-Security report,
which analyzed the sources of apps installed on over 12
million Android devices, 67% of malicious apps were
installed on the Google Play Store [4]. Despite the tricky
upload key acquisition and signature procedures when
uploading apps to the Google Play Store, it has not been able
to escape from the wrong explanation that it is a malicious app
installation platform. The installed malicious apps are
cleverly distributed to smartphone users, causing financial
losses. For example, there were financial crimes such as
stealing personal information from smartphones or

transferring money from accounts to defraud 264 million won
[5]. The representative research to prevent damage caused by
malicious apps is a signature analysis method. This analysis
consists of a code-based static analysis and a sandbox-based
dynamic analysis [6]–[8]. The static analysis can detect the
same type of malicious apps by analyzing the source code of
malicious apps. However, it is difficult to detect manual
analysis time problems and new types of malicious apps
because their signatures change. The dynamic analysis
analyzes suspected malicious output actions and packets to
determine whether it is malicious. Thus, it can detect
malicious apps that are difficult to perform static analysis,
such as obfuscation. However, it is possible to avoid detection
with the execution environment detection or the conditional
operation function of malicious apps. In that case, it may be
difficult to detect malicious apps. In addition, like static
analysis, it is difficult to detect new types of malicious apps.

In recent research, machine-learning (ML) based detection
methods have been proposed to solve new mutation detection
and false detection rates. These methods distinguish between
a normal app and a malicious app using a feature that is a form

138

JOIV : Int. J. Inform. Visualization, 6(1) - March 2022 138-144

or change of an input value. If we reprocess information from
thousands or millions of malicious apps in our dataset and
apply it to training to create a model, it becomes a ML-based
model with specific features and has a high detection rate [9],
[10]. The ML-based researches performed detection by
reading the information in the Android Application Package
(APK) file and using permission feature or malicious
behavior mainly used in malicious apps [11]–[15]. These
research use the dataset, including the permission features of
the android system. And to obtain high accuracy, their dataset
adds features: API calls, Dex header, Broadcast Receiver,
Service, etc. In addition, a study was conducted to increase
the weight of the top 20 highly important inputs by organizing
feature information on authority, API, etc., which are
frequently used in malicious app detection. However, if there
is a change in the input value due to obfuscation, the
probability of incorrect detection increases significantly
because it is difficult to determine with a trained model [8,
16]. In addition, the use of permission information, which is
an input value that is not obfuscated, can reduce the false
detection rate, but this single feature extraction method has a
limitation in that the detection rate is low.

In this paper, we propose a method of lowering the false
detection rate as a machine learning method that extracts and
uses permission information that is resistant to obfuscation. In
more detail, for improving the low detection rate of single
feature extraction, the top 20 permissions analyzed as
important in detecting malicious and normal apps, and the
number of permissions used are additionally created through
frequency analysis. The proposed method is not only tough on
false detection by obfuscation but also has a higher detection
rate than the existing single feature extraction method.

A. APK Configuration

APK is a package file used to distribute Android software
and middleware. This file contains elements that are needed
to run the app, such as AndroidManifest.xml, Class. dex, Res,
and Lib. The description of the components is shown in Table
1 [17].

TABLE I
COMPONENTS OF AN APK FILE

Name Description

Android-
Manifest.xml

Xml file that manages the app. Application
Permission, Intent, Service, Activity, SDK
version information.

Classes.dex Collected class-files and converted them into
byte code to allow Android Dalvik virtual
machines to recognize elements.

resources.arsc A file containing resource file information.
Save type and id information for various
resource files.

/res Uncompiled images. A folder containing xml
resource files.

/lib A folder containing the library. Composed
of .so files compiled appropriately for each
process created with NDK (Native
Development Kit).

/assets A folder containing app information that can
be managed by Assets-Manager.

/META-INF A folder related to the signature. Save SHA-1
and Base-64 signature values.

This paper extracts the app's permission information using
Android static analysis. Among the Android app components,

the AndroidManifest file has the permission information
needed to operate the app. It is used to protect the user's
personal information, and a system is automatically assigned
according to the authority, and user approval is required [18].
In addition, malicious apps excessively require authorization
information [12]. Therefore, a series of permission
information that may be used in malicious behavior, such as
accessing important information on a smartphone or
exchanging data over the Internet, may be used as a malicious
app detection feature.

B. Malicious App Dataset

This paper uses the Android Malicious App Dataset (CIC-
AndMal2017) provided by the Canadian Institute for
Cybersecurity (CIC) [19]. The dataset is a collection of 429
malicious apps and 5,065 normal apps from the Google Play
Store on smartphones to collect traffic generated through
various scenarios such as Internet searches, phone calls, and
messages. Based on that information, it was classified into 42
malicious software groups and four categories (Adware,
Ransomware, Scareware, and SMS-malware). Categories of
datasets and malicious software groups can be represented as
shown in Table 2 [20], [21], [22], [23].

TABLE II
CATEGORIES AND MALWARE FAMILIES IN ANDMAL2017

Name
Description

Malware Group (Family)

Adware

Software that arbitrarily displays advertising to

users.

Dowgin, Ewind, Feiwo, Gooligan, Kemoge,

koodous, Mobidash, Selfmite, Shuanet, Youmi

family

Ransomware

Malware that infiltrates under the guise of e-

mail or updates, encrypts data on the user's

device, and requires payment in return for

decryption.

Charger, Jisut, Koler, LockerPin, Simplocker,

Pletor, PornDroid, RansomBO, Svpeng,

annaLocker family

Scareware

A copycat version of ransomware.

Stressing that they have control of the computer

and demand money.

AndroidDefender, AndroidSpy.277, AV for

Android, AVpass, FakeApp, FakeApp.AL,

FakeAV, FakeJobOffer, FakeTaoBao, Penetho,

VirusShield family

SMS-malware

SMS+ Phishing.

It induces malicious app installation by

impersonating normal apps that are generally

installed on mobile phones.

BeanBot, Biige, FakeInst, FakeMart,

FakeNotify, Jifake, Mazarbot, Nandrobox,

Plankton, SMSsniffer, Zsone family

C. Machine-learning Algorithm

Machine learning algorithms are largely divided into a
supervised learning method of learning computers with
correct labels on training data and an unsupervised learning
method of learning computers without correct labels on
training data. Supervised learning is a method of classifying
new data by learning within a predetermined label using
classification or regression, and unsupervised learning is used

139

to obtain meaningful knowledge through data, although there
is no prior knowledge of specific results such as clustering or
pattern recognition [24], [25].

This paper uses a ML algorithm for classifying normal and
malicious apps, using a supervised learning method. To select
the right algorithm for the proposed system, Representative
classification algorithms such as K-Nearest Neighbor (K-
NN), Support Vector Machine (SVM), Ada Boost, Extra
Tree, and Random Forest were compared and analyzed in
Table 3 [26]–[30].

TABLE III
MACHINE LEARNING CLASSIFICATION USING THE SUPERVISED LEARNING

Algorithm Description

K-NN A method of classifying new input data into the
proximity of the neighboring data category.

SVM Define the classification baseline, the decision
boundary, as a model.
A method of categorizing which side of a
boundary the new data belongs to.

Ada-Boost As a type of ensemble learning, a method of
classifying weak classifiers into strong
classifiers by combining the results.
The weight of the sample misclassified by the
drug classifier is applied according to the
situation.

Extra-Tree Ensemble learning method that randomly
generates N Weak Trees for existing datasets
and selects classifiers with good performance by
combining classification results.

Random-
Forest

Create N Weak Trees randomly while allowing
duplication for the dataset.
Ensemble learning method of selecting a
classifier with good performance by combining
classification results.

D. Performance Evaluation Index

In this paper, a confusion matrix and a receiver operating
characteristic (ROC) curve are used as performance
evaluation indicators for machine learning models [31], [32].
The confusion matrix consists of True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN).
In order to minimize misdetection and misdetection, the
smaller the number of FPs and FNs, the better the
classification model. In addition, four evaluation indicators
are added: Accuracy, Precision, Recall, and F1-score through
TP, FN, FP, and TN of the confusion matrix shown in Table
4 [33].

TABLE IV
CONFUSION MATRIX

 Predicted

Malicious App Benign App

Actual

Malicious

App
True Positive False Negative

Benign App False Positive True Negative

Accuracy represents the ratio of the number of normal

detections in the total detected data. Precision is the
percentage of the actual number of malicious apps predicted
by malicious apps. On the other hand, Recall is the ratio of the
number predicted by malicious apps among the actual
malicious apps. Since Precision and Recall have a relationship
that is difficult to balance at the same time, F1-score, which

is a harmonious average of precision and recall, is required.
In addition, an ROC curve and an Area under the ROC curve
(AUC) were added as performance evaluation indicators,
which show the performance of the classification model as a
curve and indicate the area of the curve. The AUC-ROC curve
represents the relationship between sensitivity and specificity
on a two-dimensional plane. The criteria for how well you
find malicious apps are expressed as sensitivity (Y-axis), and
the criteria for how well you classify normal apps are
expressed as specificity (X-axis) [34]. This curve represents a
model with higher classification accuracy as it approaches the
upper left (0, 1) of the coordinates. Finally, a K-Fold Cross
Validation technique was applied to verify the reliability of
the detection performance evaluation. For K-layer Cross-
Validation, as shown in Fig. 1, after arbitrarily dividing the
dataset into the same size, one of them is used as a validation
dataset and the other (K-1) as a learning dataset. If this process
is repeated k times sequentially, it is possible to verify the
entire given dataset [35].

In this paper, for the performance evaluation of the
proposed model, the k value was set to 8, divided into 8
datasets and performance evaluation was performed.

Fig. 1 An example of the K-fold Cross Validation.

II. MATERIAL AND METHOD

Fig. 2 shows the conceptual diagram of the Android
malicious app detection system proposed in this paper.
Various files exist inside packages of normal and malicious
apps. The APK file consists of several files required to run the
app, of which the AndroidManifest.xml file has the necessary
permission information to run the app.

Fig. 2 A Conceptual Diagram of a Proposed Android Malware Detection

System.

140

In Android systems, permissions used in apps must be
licensed to protect users' personal information. Depending on
the type of permission, the user directly approves it, or the
system is automatically granted. A typical feature of
malicious apps is that they excessively require the use of
permissions. Therefore, we propose a ML-based detection
method that classifies normal and malicious apps using
permission information. First, the privileged information of
the app is extracted in a one-hot encoding format from the
AndroidManifest.xml file. Input data for training the ML
model is converted into a dataset in the form of a csv file. In
order to increase detection performance, the frequency of data
is analyzed, and the total number of permissions (TPC) and
the number of frequently used permissions Main Permission
Count (MPC) are learning algorithm is designed by
comparing binary classification algorithms and selecting the
one with good performance. Finally, a new app that requires
a malicious or normal test is determined using the ML model
previously created.

A. Dataset Creation

The preprocessing process must inevitably perform
repetitive tasks. This is because it is the process of creating a
dataset necessary for training with numerous related
materials. Therefore, in this paper, an automation program
described in Algorithm 1 was used to extract permission
information from multiple apps automatically. First, an
existing permission list file is read, and a label variable is
created. Additionally, create the value variable to have the
label size +3 as a column. When the column size of the
generated value is n, 1 is classified into an order, 2 is an APK
name, 3 to n-1 is a permission list, and n is classified
according to the index. Next, it is repeated as many times as
the number of APKs prepared to create a dataset. A new line
of value is added, and the class value is stored as 1 malicious
and 0 normal depending on whether the APK file is malicious.
Then add the value item to 1 for all the permissions in the
AndroidManifest.xml file. In this case, if an authority that is
not in the permission list is found, a new column is added to
column n-1 of value and set to 1. The label also inserts the
permission name into the n-1 index as a value. After that,
when the repetition ends by the number of APK files, a dataset
is generated by combining label and value and stored as a
CSV (Comma-Separated Values) file. Finally, save the
updated label in this task to the permission list file.

Algorithm 1 Auto Extract Algorithm
Input: apk, APK files
Input: permList, permission list file
Output: dataset, dataset file in csv format
Output: permList, permission list file
Method:
label ← permList
n ← #permList + 3
for j=1 to #apk do
 if value is not exist then
 create value to 1×n array
 else then
 attach new row of value
 decompression apk[j]
 value[j][1] ← j
 value[j][2] ← name of apk
 for k=3 to n-1 do
 if perm does not exist in label then
 insert new column at n-1 index of value

 insert perm’s name at n-1 index of label
 n ← n + 1
 if label[k-2] exist among all perms in apk[k] then
 value[j][k] ← 1
 end for
 value[j][n] ← (apk == malicious app) ? 1 : 0
end for
dataset ← (label, value)
permList ← label

B. Adding Frequency Features to Datasets

Since the single feature extraction method has a low
detection rate by detecting only authority information, the
performance is further improved by using the frequency
analysis results. The two features define features that mean
the total number of permissions used in the app as TPC, and
features that mean the top 20 permissions analyzed as
important in using the app as MPC. Adding these features is
also iterative, so an automation program described in
Algorithm 2 was used.

TABLE V
TOP 20 PERMISSIONS

No Permission (Description)

1 android.permission.READ_PHONE_STATE
(Read about phone status such as device phone number, network
information, and call status in progress)

2 android.permission.INSTALL_SHORTCUT

(Install icons on the home screen)
3 android.permission.SYSTEM_ALERT_WINDOW

(Open windows using top TYPE_SYSTEM_ALERT of other

applications)
4 android.permission.GET_TASKS

(Access current or recently executed task information)

5 android.permission.ACCESS_WIFI_STATE
(Access to information about Wi-Fi networks)

6 android.permission.MOUNT_UNMOUNT_FILESYSTEMS

(File system format for removable storage)
7 com.google.android.c2dm.permission.RECEIVE

(Receive messages from c2dm server)

8 android.permission.WRITE_EXTERNAL_STORAGE
(Write a file to an external repository)

9 android.permission.ACCESS_COARSE_LOCATION

(Access to a wide range of locations (Cell-ID, WiFi))
10 android.permission.CHANGE_WIFI_STATE

(Change Wi-Fi connection status)

11 android.permission.VIBRATE
(Vibration control)

12 com.android.vending.BILLING

(Access to payment data)
13 android.permission.ACCESS_FINE_LOCATION

(Access to GPS)

14 android.permission.WAKE_LOCK
(Keep the process when the screen is dark or on standby)

15 android.permission.READ_EXTERNAL_STORAGE

(Read a file to an external repository)
16 android.permission.RECEIVE_BOOT_COMPLETED

(Boot complete execution)

17 android.permission.GET_ACCOUNTS
(Access the account list from within the account service)

18 android.permission.CAMERA

(Access to camera equipment)
19 android.permission.ACCESS_NETWORK_STATE

(Access to information about network access)

20 com.google.android.gsf.permission.READ_GSERVICES
(Read data about map)

First, the dataset file is read and stored in label and value

variables, respectively. And the top 20 authority names of
high importance are defined as permList. Insert two additional
columns in column n-1 of value and insert TPC and MPC into
the n-1 index as values in the label. In order to, obtain the

141

frequency, TPC and MPC variables are created and initialized
to zero. Next, since one line of the dataset extracts features of
one APK file, the number of lines of value repeats it. TPC
checks all the characteristics of each APK and accumulates
the permission's true (1)/false (0) values.

Algorithm 2 Auto Add Feature Algorithm
Input: dataset, dataset file in csv format
Input: permList, top 20 permission list to detect malware
Output: dataset, dataset file in csv format
Method:
(label, value) ← dataset
insert new 2-column at n-1 index of value
insert (tpc’s name, mpc’s name) at n-1 index of label
tpc ← 0, mpc ← 0
for j=1 to #value’s row do
 for k=3 to n-3 do

tcp ← tcp + value[j][k]
 if label[k] exist among all permList then
 mpc ← mpc + value[j][k]
 end for
 value[j][n-2] ← tpc, value[j][n-1] ← mpc
 tpc ← 0, mpc ← 0
end for
dataset ← (label, value)

The MCP verifies all the privileged names of each APK.

After checking whether the value is in the permList, the
authority's true (1)/false (0) values are accumulated and
summed, if applicable. Then, TPC and MPC values are stored
in the n-2 and n-1 indexes of the value and are initialized to
zero again. After that, if the number of lines of value is
repeated, combine the label and value to create a dataset and
save it as a CSV file. A total of 1013 APK files and 1031
Permission Lists were sorted. If the corresponding permission
exists in each APK file, it is output as 1 and if not, it is output
as 0. In addition, it is possible to check the frequency of the
total permission present in each APK file in the last cell. The
top 20 Permission frequencies based on the importance of
feature information were added to the existing csv file. If there
are the top 20 permissions based on the importance of feature
information among the permissions present in each APK file,
it is vectorized to check the frequency by accumulating them

C. Creation of Classification Algorithm Models

Six hundred downloaded datasets were collected in Benign
folders, 413 malicious apps in Malicious folders, and 1031
Permission features used in normal and malicious apps were
extracted. The Permission frequency contained in one APK
file was converted into a csv file. For higher accuracy of
normal and malicious apps classification, the top 20
Permission frequencies based on the importance of feature
information in one APK file were converted to csv files. A
classification algorithm selection process was performed
based on the previously extracted authority information to
determine normal and malicious apps. K-NN, SVM, Ada
Boost, Extra Tree, and Random Forest were considered as
classification algorithms as shown in Table VI.

TABLE VI
MACHINE LEARNING MODELS ACCURACY COMPARE

Model Accuracy Precision Recall F1 score
K-NN*1 90.79 87.18 88.70 90.79
SVM*2 90.79 90.65 84.35 90.79
AdaBoost*3 93.75 92.86 90.43 93.75
Extra Tree*4 94.74 93.04 93.04 94.74
RF*5 95.07 93.10 93.91 95.07

*1 K-NN options: n_neighbors =10
*2 SVM options: C= 0.1
*3 Ada-Boost options: n_estimators=100
*4 Extra-Tree: n_estimators=100
*5 Random Forest options: n_estimators= 50

As a result, Random Forest was selected as an algorithm

suitable for this study. Random Forest can prevent overfitting
by the law of large numbers made of randomness. It is also
robust to noise and reduces predicted volatility. The binary
classification ML model was trained through the previously
generated dataset, and the performance of the five
classification algorithms was compared. Hyper-Parameter of
each classification model showed optimal performance even
with default values, so only the n_estimators’ values of three
models, Random Forest, Extra Tree, and Ada Boost, were set
differently. In the case of K-NN, the n_neighbors value was
set to the optimal 10 in the experiment, and the SVM gave the
gamma C value to 0.1. Ada Boost set it to 100 optimal for the
experiment, and Random Forest and Extra Tree set it to 50
optimal for the experiment. As a result, comparing the
accuracy with the training rate of 80% and the verification rate
of 20% for the experimental data confirmed that the Random
Forest model showed the highest performance with 95.07%
accuracy in determining normal and malicious apps.

III. RESULT AND DISCUSSION

In this experiment, 600 normal apps and 413 malicious
apps were used. Among the permission information extracted
from a total of 1031 APK files, a total of 1013 feature data
were used for model training by deleting duplicated or
meaningless data. The division ratio of the training and
verification datasets was 8:2, and the training datasets were
used as 810 and 203 testing datasets. The experiment was
conducted by adding frequency to the previously created
dataset using the Random Forest algorithm.

A. Frequency Feature for Permission (EXP #1)

This study considers whether it is possible to distinguish
between normal and malicious apps with higher accuracy by
adding features on the frequency of permissions in APK files.
This experiment identifies the frequency of permission in one
APK file and uses the information as a feature of the ML
model to increase classification accuracy. The experiment
was conducted with a total of 1032 features by adding a field
for the frequency of the permission of the corresponding APK
to the pre-treated experimental data.

Fig. 3 Compare of Permission Frequency Performance Indicator

142

Earlier, as it was confirmed that the performance of the
Random Forest model was the best through the algorithm
selection process, the experiment was conducted using only
the Random Forest model. The experimental data was divided
by a verification ratio of 20%, and the value of Hyper-
Parameter optimal for the experiment was set. The max_depth
value was set to 50, the min_samples_split value was set to 5,
and the n_estimators value was set to 50.

The algorithm selection process confirmed that the result of
the normal/malicious app determination of the ML model
training without adding the Permission frequency was
95.07%. As a result of training the machine learning model
by adding features on the frequency of permission of each
APK file, the accuracy was 97.04%. Compared with previous
results that did not add the frequency of permission as a
feature, it can be seen that the accuracy was improved by
1.97%.

A total of four types of model performance evaluation
indicators were used: accuracy, accuracy, reproduction rate,
and F1-score. In EXP #1, the accuracy of the ML model was
97.04%, the precision was 97.65%, and the reproduction rate
was 95.40%. The F1-score, which calculated the harmonic
mean of precision and reproduction rate, also showed a result
of 97.04%. Earlier, as a result of calculating the accuracy with
8-layer cross-validation for reliable evaluation, the
verification result was 93.48%.

B. frequency feature for the top 20 permissions (EXP #2)

Through EXP #1, it was confirmed that the accuracy of
determining normal and malicious apps according to the
frequency of permission was improved. In this experiment,
the frequency of permissions frequently used in apps is added
as a feature to increase the classification accuracy of normal
and malicious apps. Even if many permissions make up
malicious apps, there may be cases where normal apps request
permission. In order to prevent discriminating normal apps as
malicious apps, this study improves the accuracy of
determining normal apps and malicious apps by adding
frequency features, not the presence or absence of the top 20
permissions.

In EXP #2, an experiment was conducted with a total of
1033 features by adding the frequency of use of the top 20
Permissions shown in the above feature information
important to the dataset used in EXP #1. The experimental
data were divided by a verification ratio of 20%, and the
Hyper-Parameter value was set to a max_depth value of 50, a
value of min_samples_split, and a value of n_estimulators of
50, which are optimal for the experiment.

The training was conducted by setting the same algorithm
and the same parameter, and the accuracy was 99.01%, which
showed higher classification accuracy than EXP #1. The
reproduction rate was 97.70%, but the reproduction rate was
100%. Since the False Positive ratio is 0, there is no false
detection. F1-score also showed high results at 99.01%. To
compare under the same conditions as EXP #1, the EXP #2
model was classified with an accuracy of 94.18% due to 8-
layer cross-validation.

C. Comparison Between Experiments

As a result of evaluating the two experiments with the same
performance evaluation index, the Performance of EXP #2 is

relatively superior to that of EXP #1. Table 7 is the result of
synthesizing the previous two experimental results. In terms
of accuracy and F1-score, EXP #2 showed 1.97% higher
accuracy than EXP #1, and there was a 0.05% fine difference
in terms of precision. However, the reproduction rate was
4.6%, showing the biggest difference. This is because there
was a difference between the two models in the False Positive
ratio in the confusion matrix.

In Fig. 4, the two experimental results are shown and
compared as a ROC curve. Although there is a slight
difference, the ROC curve corner of EXP #2 is closer to the
upper left. The AUC value, which means the area under the
ROC curve, can also be determined by classification
accuracy, with the AUC value of the EXP #1 model being
0.9975 and the EXP #2 model being 0.9978. The larger the
area under the ROC curve, the better the model, so the EXP
#2 model with a relatively high AUC value is the model
optimized for classification. In addition, the EXP #2 model
was classified with 0.7% higher accuracy in the 8-layer cross-
validation conducted to increase the reliability of the
experimental results further.

TABLE VII
EXP 1, EXP 2 COMPARISON OF RESULTS

Model Accuracy Precision Recall F1 score

Exp #1
*
 97.04 97.65 95.4 97.04

Exp #2* 99.01 97.70 100.0 99.01

*Options: n_neighbors =100, max_depth=50, min_samples_splits =5

Fig. 4 The ROC Curves of EXP #1 and EXP 2.

IV. CONCLUSION

This study classified normal and malicious apps through
ML-based detection techniques based on the frequency of
permission of Android apps. Considering that malicious apps
require excessive permission, unlike normal apps, we checked
whether malicious apps could be detected more accurately by
using them as frequency feature data using permission.
Among the various ML classification algorithms, Random-
forest showed the highest accuracy. The simple Permission-
based detection model using Random Forest showed an
accuracy of 95.07%, and the detection model, including the
frequency at which the app used permission, obtained an
accuracy of 97.04%. The trained model showed 99.01%
accuracy, including the frequency of using the top 20
Permission information that affects distinguishing between

143

normal and malicious apps. It was confirmed that the accuracy
was improved by about 2% by including meaningful feature
data such as the frequency of the top 20 permissions based on
the importance of feature information using the frequency of
use of the permission. Since it is important to minimize
misdetection and misdetection and make accurate judgments
in detecting normal and malicious apps, an ML model
optimized for classification has been implemented. In this
study, as the number of malicious apps that develop day-by-
day increases, it was judged that it is important to detect
malicious apps through the ML model accurately. However,
simply using permission as a criterion for distinguishing
between normal and malicious apps is not enough to detect all
malicious apps appearing with new attack technology. In
addition, it is expected that higher accuracy of the detection
model can be expected by combining feature information
effective in detecting malicious apps, such as APIs that access
and control sensitive data from users or adding other detection
criteria. In future research, recent attackers bypass malicious
app detection using obfuscation that hides malicious code and
prevents static analysis of malicious apps. It is necessary to
think about how to detect malicious apps with such
obfuscation.

REFERENCES

[1] J. A. Odey, B. Ola, and I. Agbonlahor, "The Cyber Crime of Juice
Jacking in Developing Economies: Susceptibilities, Consequences and

Control Measures," European Journal of Information Technologies

and Computer Science, vol. 1, no. 5, pp. 1-5, 2021.
[2] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and S.

Venkatraman, "Robust intelligent malware detection using deep
learning," IEEE Access, vol. 7, pp. 46717-46738, 2019.

[3] Joon-ho Han, “Mobile Hacking Malicious Apps Surge,” Oct. 7, 2020.

[Online]. Available: https://www.hanjunho.com/35/?q=YToxOntzOj
EyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&id
x=5050914&t=board.

[4] EST security, "Play Store identified as main distribution vector for
most Android malware," Nov. 12, 2020. [Online]. Available:
https://blo g.alyac.co.kr/3370.

[5] Y. J. Lee, "Voice phishing gang arrested for extorting $264 million by
inducing malicious app installation," May. 31, 2021. [Online].
Available: https://www.news1.kr/articles/?4323269.

[6] S. E. Kang, H. S. Yoon, and S. H. Jung, "Design and Implementation
of API Extraction Method for Android Malicious Code Analysis Using
Xposed," Journal of the Korea Institute of Information Security &

Cryptology, vol. 29, no. 1, pp. 105-115, Feb. 2019.
[7] G. Y. Kim, S. R. Kim, Y. J. Jeon, and J. S. Kim, "A Trend of Machine

Learning for Android Malware Detection and Permission Based

Android Malware Detection using Deep Learning," Korean Society of

Digital Forensics, vol. 14, no. 3, pp. 316-326, Sep. 2020.
[8] A. Afianian, S. Niksefat, B. Sadeghiyan, and D. Baptiste, "Malware

dynamic analysis evasion techniques: A survey," ACM Computing

Surveys (CSUR), vol. 52, no. 6, pp. 1-28, 2019.
[9] Z. Fang, J. Wang, J. Geng, and X. Kan, "Feature selection for malware

detection based on reinforcement learning," IEEE Access, vol. 7, pp.
176177-176187, 2019.

[10] J. G. Joo, I. S. Jeong, and S. H. Kang, "An Optimal Feature Selection

Method to Detect Malwares in Real Time Using Machine Learning,"
Journal of Korea, Multimedia Society, vol. 22, no. 2, pp. 203-209, Feb.
2019.

[11] Y. Chang, B. Liu, L. Cong, H. Deng, J. Li, and Y. Chen, "Vulnerability

Parser: A Static Vulnerability Analysis System for Android
Applications," Journal of Physics: Conference Series, vol. 1288, no.
1, Aug. 2019.

[12] H. W. Lee and H. S. Lee, "Optimal Machine Learning Model for
Detecting Normal and Malicious Android Apps," The Journal of the

Internet of Things in Korea, vol. 6, no. 2, pp. 1-10, Jun. 2020.

[13] M. J. Kim and J. C. Ryou, "Development of LLDB module for
potential vulnerability analysis in iOS Application," Journal of

Internet Computing and Services, vol. 20, no. 4, pp. 13-19, 2019.

[14] K. W. Lee, S. T. Oh, and Y. Yoon, "Modeling and Selecting Optimal

Features for Machine Learning Based Detections of Android
Malwares," Thesis Collection of the Korean Society for Information

Processing, vol. 8, no. 11, pp. 427-432, Nov. 2019.

[15] V. Sihag, M. Vardhan, P. Singh, G. Choudhary, and S. Son, "De-lady:
Deep learning based android malware detection using dynamic
features," Journal of Internet Services and Information Security

(JISIS), vol. 11, no. 2, pp. 34-45, 2021.
[16] H. W. Lee and H. S. Lee, "Optimal Machine Learning Model for

Detecting Normal and Malicious Android Apps," Journal of The

Korea Internet of Things Society, vol. 6, no. 2, pp. 1-10, 2020.
[17] J. Park, T. Kim, Y. Shin, J. Kim, and E. Choi, "Design and

Implementation of a Pre-processing Method for Image-based Deep

Learning of Malware," Journal of Korea Multimedia Society, vol. 23,
no. 5, pp. 650-657, 2020.

[18] Android Developer, "Manifest.Permission," [Online]. Available:

https://developer.android.com/reference/android/Manifest.permission
[19] S. I. Imtiaz, S. ur Rehman, A. R. Javed, Z. Jalil, X. Liu, and W. S.

Alnumay, "DeepAMD: Detection and identification of Android

malware using high-efficient Deep Artificial Neural Network," Future

Generation computer systems, vol. 115, pp. 844-856, 2021.
[20] B. H. Kim and M. T. Kwon, "Measures for Adware and Spyware,"

Journal of Convergence Security, vo1. 6, no. 4, pp. 41-47, Dec. 2006.
[21] G. B. Lee, J. Y. Ok, and E. G. Lim, "Method of Signature Extraction

and Selection for Ransomware Dynamic Analysis," KIISE

Transactions on Computing Practices (KTCP), vol. 24, no. 2, pp. 99-
104, Feb. 2018.

[22] D. Maimon and E. R. Louderback, "Cyber-dependent crimes: An

interdisciplinary review," Annual Review of Criminology, vol. 2, pp.
191-216, 2019.

[23] Korea Internet & Security Agency (KISA) Internet Protect World &

KrCERT, “What is Smishing?,” [Online]. Available: https://www.
boho.or.kr/cyber/smishing.do.

[24] S. M. Choi, "Cyber threats analysis using machine learning," M.S.

thesis, Dept. CSE. Kor., Han-yang Univ., Seoul, Korea, 2020.
[25] Y. Kim and S. Chang, "A Hybrid Approach of Using Both Simulation

plus Neural Networks for Window Design Optimization and HVAC

Energy Consumption Prediction Modeling," International Journal of

Structural and Civil Engineering Research, vol. 8, no. 4, pp. 300-309,
Nov. 2019.

[26] B. Park, I. Yoo, J. Lee, S. Jang, S. Y. Kim, and Y. Kim, "A Reference
Frame Selection Method Using RGB Vector and Object Feature
Information of Immersive 360° Media," Journal of IKEEE, vol. 24, no.

4, pp. 1050-1057, 2020.
[27] J. M. Koo, S. D. Na, J. H. Cho, and M. N. Kim, "Melanoma

Classification Algorithm using Gray-level Conversion Matrix Feature

and Support Vector Machine," Journal of Korea Multimedia Society,
vol. 21, no. 2, pp. 130-137, 2018.

[28] Y. H. Jo, "Early ransomware detection using machine learning," M.S.

thesis, Dept. CSE. Kor., Kook-Min Univ., Seoul, Korea, 2020.
[29] G. U. Park and I. Jung, "Comparison of resampling methods for

dealing with imbalanced data in binary classification problem," The

Korean Journal of Applied Statistics, vol. 32, no. 3, pp. 349-374, 2019.
[30] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, "Applications

of machine learning to machine fault diagnosis: A review and

roadmap," Mechanical Systems and Signal Processing, vol. 138, pp.
1-39, 2020.

[31] A. Arora, S. K. Peddoju, and M. Conti, "Permpair: Android malware

detection using permission pairs," IEEE Transactions on Information

Forensics and Security, vol. 15, pp. 1968-1982, 2019.
[32] J. M. Jung, H. J. Kim, S. J. Cho, S. C. Han, and K. W. Suh, "Efficient

Android Malware Detection Using API Rank and Machine Learning,"
Journal of Internet Services and Information Security, vol. 9, no. 1, pp.
48-59. Feb. 2019.

[33] S. H. Park, M. Y. Kang, J. H. Park, S. J. Cho, and S. C. Han,
"Analyzing the Effects of API Calls in Android Malware Detection
Using Machine Learning," Journal of Korea Institute of Information

Security & Cryptology, vol. 48, no. 3, pp. 257-263, Mar. 2021.

[34] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, "A combination method for
android malware detection based on control flow graphs and machine
learning algorithms," IEEE access, vol. 7, pp. 21235-21245, 2019.

[35] S. I. Imtiaz, S. U. Rehman, A. R. Javed, Z Jalil, X. Liu, and W. S.
Alnumay, "Deep AMD: Detection and identification of Android
malware using high-efficient Deep Artificial Neural Network," Future

Generation Computer Systems, vo1. 115, pp. 844–856, Feb. 2021.

144

