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Abstract—Deep neural networks, a field of artificial intelligence, have been used in various fields. Deep learning is processed on high-

performance GPUs or TPUs. It requires a high cost as much as its good performance. As the demand for edge computing increases, 

many studies have been conducted to perform complex deep learning operations in a low-computing processor. Among them, a typical 

study is to lighten the deep learning network. This paper proposes a handwritten digit recognition hardware accelerator suitable for 

edge computing using the MNIST database. After setting the correct rate for MNIST to 94% and performing network lighting 

processes, a hardware structure that can reduce the area of hardware and minimize memory access is proposed. The network is set as 

a two-layer, fully connected network. The network is modeled with Python and lightened while checking the performance. Network 

parameters, weights, and biases are quantized. The pixel number and bit number of MNIST input data are also reduced. The number 

of MAC units and the processing order of the hardware accelerator are determined so that there are no used MACs while performing 

the MAC operations in parallel. It is designed with Verilog HDL, and its functions are checked in ModelSim. And then, it is implemented 

in Xilinx Zynq ZC-702 to verify the operations. The designed number recognition accelerator is expected to be widely used in edge 

devices by reducing the area and memory access.  
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I. INTRODUCTION 

Deep neural networks, which is a field of artificial 

intelligence (AI), are being used in various fields such as 

speech recognition, image classification, disease diagnosis, 

autonomous driving, image generation, and complex games 

[1]–[4]. In some fields, the accuracy of AI has reached a level 

that surpasses that of humans. The accuracy of AI 

presupposes very high costs: mass storage, high-speed 

parallel computing, etc. Google DeepMind's AlphaGo, which 

won against the legendary Sedol Lee by 4-1 in March 2016, 

is known to use 48 Tensor Processing Units (TPUs). TPUs are 

hardware devices specialized to parallelize vector/matrix 

calculations, compared to graphics processing units (GPUs). 
Therefore, now, methods for network optimization, such as 

computational convolution optimization, activation function 

improvement, parameter factorization, network pruning, and 

network quantization, are being studied as well as 

performance improvement [5]–[9]. 

Recently, as the demand for edge computing increases, 

research on dedicated accelerators instead of high-

performance processors such as GPUs and TPUs has been 

conducted [10]–[12]. In edge computing, edge AI devices 

process data in real-time, and the collected data are sent to a 
central server [13]–[15]. Improvement, including network 

training, is made on a central server. In other words, most 

edge AI devices only inference without training. In addition, 

most edge AI devices run on batteries. Therefore, the area and 

power consumption of the devices is as important as the 

performance [16]. Although 64/32-bit floating-point numbers 

are used based on GPU/TPU-software [17]–[19] to find 

network parameters through training, 16/8/4/2 fixed-point 

numbers are used in inference to reduce area and power 

consumption [20]–[22]. In addition, many efforts have been 

made to reduce area and power consumption, such as reducing 
memory storage capacity and memory access by compressing 

data [23]–[25]. 

The MNIST database (Modified National Institute of 

Standards and Technology database) is a database of 
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handwritten digits [26]. Each data is a digit image between 0 

and 9, and the digit is located in the center of the 28x28 black 

and white image. It consists of 60,000 training sets and 10,000 

test sets. It is a representative database widely used in neural 

networks. As a result, many studies using the MNIST 

database have been conducted, and the accuracy reaches 

about 99.8% [27]–[29]. Most of the networks with an 

accuracy of 99% or more use a convolutional neural network 

(CNN) [30], [31]. CNN consists of a convolutional layer, an 

activation layer, a pooling layer, and a fully connected layer. 
It is difficult for even people to accurately judge the digit 
figures in which these networks made errors [32]. Recently, 

rather than improving the performance of MNIST, many 

studies have been conducted to reduce complexity and 

increase usability so that it can be processed even in small 

devices [33], [34]. 

This paper investigates the handwritten digits detector 

using the MNIST database as a dedicated accelerator that can 

be used in edge AI devices. It focuses on area and power 

consumption rather than accuracy. The next section explains 

network model lightning methods and hardware structure. In 

section III, we show implementation and results and then 
conclude. 

II. MATERIALS AND METHOD 

A. Network model optimization 

In this study, a neural network model optimization is 

performed with the goal of a neural network with two fully 

connected layers for the MNIST database. The network model 

is coded in Python to train and test. First, the two-dimensional 

input images are converted into one-dimensional arrays. 

Since they are image data, when they are changed to one-
dimensional arrays, the spatial information of the images is 

lowered. However, it is possible to reduce the complexity of 

the convolution calculation and power consumption due to 

memory access. 

The second lighting method is to reduce input data size to 

reduce hardware area and power consumption. The MNIST 

database consists of images of 728 (=28x28) pixels. In this 

study, the size of input data is reduced by half in the horizontal 

and vertical directions, respectively, and a 14x14 pixel image 

is created. In other words, the number of pixels of the input 

image data decreases by a quarter. To reduce the image size, 
pooling is required. Pooling methods include max pooling, 

min pooling, and average pooling. Max pooling selects the 

largest pixel value in a predetermined pixel area. Conversely, 

min pooling selects the smallest pixel in a predetermined pixel 

area. Averaging pooling selects the average value of the pixel 

values included in a predetermined pixel area. 

To compare the three pooling methods, a 2-layer network 

is constructed, as shown in Fig. 1. The input layer consists of 

196 input nodes and one bias node. The hidden layer has 14 

nodes, and the output layer consists of 10 nodes. Since no 

operation is performed in the input layer, it is a 2-layer 
network consisting of one hidden layer and one output layer. 

The input layer has 196 nodes (x0 ~ x195) because MNIST 

images are converted to one-dimensional arrays with 196 

(=14x14) elements after max pooling with 2x2 filter and 

stride. The number of nodes in the hidden layer is set to 14. 

The number of nodes in the input layer, which is already set 

to 196, is the integer multiple of the number of nodes in the 

hidden layer. As will be explained later, if it is set to an integer 

multiple, it is to reduce the not-used multipliers when 

processing multiplication in parallel. 

 

 
Fig. 1 Two-layer network model 

In the hidden layer, each node applies a linear 

transformation to the input data xn through the weights w(t,s) 

and sums the bias b0. This can be expressed as a formula as 

follows. 

 ��[�] =� �	(�,�)[�] ���
���

���
+ ��[�] (1) 

where w(t,s)
[n] is the weight of the n-th layer and represents a 

weight connected from the s-node of the n-1 th layer to the t-

node of the n-th layer. That is, w(t,s)
[1]

 is the weight of layer 1, 

and is the weight connected from the s node of the input layer 

to the t node of the first layer. b0
[1] means the bias is connected 

to the first layer, and there is only one node in one layer. And 

zt
[n] means the value after multiply-accumulate (MAC) is 

performed at the t-th node of the n-th layer. 
The ReLU function is used as the activation function of the 

hidden layer. Among the activation functions, the sigmoid 

function is widely used in logistic classification because it 

outputs a value between 0 and 1. However, the sigmoid 

function has a disadvantage in that the optimization process is 

slow. In addition, the larger the absolute value of x, the greater 

the possibility of losing the differential value during gradient 

backpropagation. The hyperbolic tangent function, tanh, 

solves the problem of slowing down in the sigmoid 

optimization process by shifting the function's center point to 

zero. However, the vanishing gradient problem in which the 
derivative value disappears above a certain value for the 

differential function remains [35]. The ReLU function is a 

function to solve the gradient vanishing problem of sigmoid 

and tanh. If x is greater than 0, the slope is 1, and if it is less 

than 0, the value of the function becomes 0. It is characterized 

by faster learning, less computational cost, and simpler 

implementation than sigmoid and tanh functions. Leaky 

ReLU and PReLU have been developed to compensate for the 

disadvantage of dying ReLU in which neurons can die when 

their value is less than 0. However, they have similar 

performance to ReLU and have the disadvantage of being 

complex. Therefore, the ReLU function is selected as the 
activation function. The MAC calculation result of the hidden 

layer z[1] passes through the activation function ReLU, and the 

result value a[1] is transmitted to the output layer. 

The output layer is composed of 10 nodes because it 

represents the probabilities for each of the 10 digits from 0 to 

9. In the output layer, as in the hidden layer, each node applies 
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a linear transformation to the input data an through the weights 

w(t,s)
[2] and sums the bias b1

[2]. In the output layer, the final 

result value y is obtained through the Max function, which 

selects the largest value of given input data instead of the 

ReLu function. 

TABLE I 

COMPARISON OF NETWORK ACCURACY ACCORDING TO BATCH SIZE 

batch size 10 100 1000 

train images 91.53% 93.59% 94.07% 
test images 91.50% 93.26% 93.96% 

The network model is coded using Python. After training 

10,000 times while changing the mini-batch size of the 

MNIST data, the accuracy of the training data and the test data 

is compared. As shown in Table I, the performance difference 

after 100 was less than 1%. Therefore, the mini-batch size is 

set to 100 and then trained 10,000 times.  

Since MNIST data is a black and white image, max pooling 

is expected to perform much better than the other two pooling 

methods, but there is a difference of about 0.1% in accuracy. 
As a result, the image size is reduced by max pooling. 

TABLE Ⅱ 

COMPARISON OF NETWORK ACCURACY ACCORDING TO THE NUMBER OF BIT

S OF WEIGHTS AND BIASES 

 float 9bits 8bits 7bits 6bits 5bits 

accuracy 94.08% 94.08% 94.03% 94.01% 93.67% 92.87% 

Third, the number of bits of weights and biases is 

optimized. In general, GPUs are used to train with datasets, 
so float 32 or float 16 data types are used. However, if the 

network is not very deep and the data input itself is 8 bits as 

in this study, good performance can be obtained even if 

weights and biases are defined as a fixed-point data type. 

Table Ⅱ and Fig. 2 show the results of comparing accuracy 

while changing the number of bits of weights W and biases b 

from float 32 to fixed point 4 bits. For float 32, the accuracy 

is about 94%. When changing to a fixed point and reducing 

the number of bits from 9 bits to 4 bits, if it is more than 7 

bits, it shows about 94% accuracy, which is similar to the case 

of float 32. And, when it is lowered to 6 bits, it can be seen 

that the accuracy drops sharply. We select 8 bits for weights 
and biases to reduce the number of bits while maintaining the 

accuracy to a certain degree. 

 

 
Fig. 2  Comparison of Network Accuracy according to the Number of Bits 

(4-10 bits) of Weights and Biases 

Fourth, the number of bits of input data is optimized. The 

input data is the pixel data of MNIST. Since it is a black (255) 

and white(0) image, its number of bits is 8. As summarized in 

Table Ⅲ, the accuracy is checked by lowering the number of 

input data bits from 8 bits to 3 bits. Accuracy differs by about 

0.1% from 8 bits to 3 bits. When its number of bits is 4, the 

accuracy of the test image is the highest. Therefore, in this 

study, the number of bits for the handwritten-digit image is 

selected to be 4 to optimize the hardware area. As a result, the 

size of one image is reduced by 1/8 from 6,272 (=28x28x8) 

bits to 784 (=14x14x4) bits. This can reduce the required 

memory storage and reduce memory access, which can reduce 

power consumption as well as area. 

TABLE Ⅲ 

COMPARISON OF NETWORK ACCURACY ACCORDING TO THE NUMBER OF BIT

S OF AN INPUT DATA PIXEL 

 8bits 7bits 6bits 5bits 4bits 3bits 

accuracy 93.98% 93.97% 93.98% 93.98% 94.03% 93.97% 

B. Hardware architecture 

An accelerator consists of a controller, a MAC block, a 

ReLU block, and a Max block. The controller sequentially 
executes the entire hardware process. The MAC block is 

responsible for the operation of the affine layer. The ReLU 

block acts as an activation function of the first layer, and the 

final number recognition is made in the MAX block. 

In order to implement the proposed two-layer network in 

hardware, the following four structures are compared in terms 

of low area and low power consumption. For explanation, we 

will use the Tm symbol, which means the time it takes from 

the start of one multiplication to the start of the next 

multiplication in the m-th structure. After the first 

multiplication, it becomes T. After the second multiplication 

operation, it becomes 2T, and after the n-th multiplication 
operation, it becomes nT.  

As shown in Fig. 3, the first structure has multipliers as 

many as the nodes of the input layer to take advantage of the 

parallel hardware processing. For hidden layer processing, 

196 input data x are given as the first input of each multiplier. 

At the start of the operation, a weight w(0,n) is given to each 

multiplier Mn. That is, all multiplication operations for the 

first node of the hidden layer are performed at time T. To add 

all 196 multiplication results, adders with an 8(=log2(196))-

step tree structure are used. When the accumulated result 

passes through the ReLU block, the result of the first node of 
the hidden layer is completed. The result is stored in the local 

register and waits until all calculations of the hidden layer are 

finished.  

 

 
Fig. 3 The first structure of the accelerator MAC 

Next, while x is fixed, w(1,n) is given to each multiplier Mn, 
and all multiplication operations for the second node of the 

hidden layer are performed. Similarly, the result of the second 
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node of the hidden layer is completed through the 8-step tree 

structure adders and the ReLU block. When this process is 

repeated 14 times, the operation on the hidden layer is 

finished. During this time, the 196 input data are accessed 

from memory at once, and weights are accessed from memory 

14 times by 196. To store the 196 input data and results, 196 

4-bit local registers and 14 25-bit local registers are required. 

The output layer is calculated using w[2], b1 and the results 

of the hidden layer. The number of the hidden layer results is 

14, and the output layer has 10 nodes. That is, a total of 

140(=14x10) multiplication operations are required. Since 
there are 196 MACs for the hidden layer, the output layer can 

complete the calculation at one T. In summary, this structure 

has 196 multipliers, and all operations are completed in 15T. 

All input data and weight are accessed only once from a 

memory. Although the processing speed is fast, it is not 

suitable for a low-area and low-power accelerator because 

there are too many multipliers. 

In the second structure, there are 14 multipliers instead of 

196 multipliers. In the hidden layer, as shown in Fig. 4, the 

one input data xn is broadcast to 14 multipliers, and the 14 

weights w(t,n)
[1] corresponding to the input are transmitted to 

14 multipliers, respectively. As can be seen from the index of 

weights, 14 multiplication results are values for different 

nodes. 14 multiplication results are added in the first structure 

because they are all for one hidden layer node. However, in 

the second structure, since 14 multiplication results are results 

for different nodes, each result must be stored in the local 

register and accumulated until the rest of the multiplication is 

finished. Since one input data is processed at a time, the 

hidden layer operation is finished when 196T is reached. The 

14 values stored in the local registers are input to the next 

output layer through the ReLU function. 
 

 
Fig. 4 The second structure of the accelerator MAC 

Since the output layer has 10 nodes, 4 out of 14 MACs are 

not used when calculating the output layer. As in the hidden 

layer, xn is input equally to 10 multipliers, and 10 weights 
w(t,n)

[2] corresponding to the input are connected to each 

multiplier. When this process is repeated 14 times, the output 

layer operation is finished. Totally, it takes 210(= 196+14)T. 

Memory access is performed only once for both input data 

and weights. 

In order to eliminate not used multipliers when calculating 

the output layer, the third structure does not broadcast input 

data as shown in Fig.5. In the second structure, as input data 

are broadcast, each multiplier calculates the value transmitted 

to different nodes at a specific time. However, in the third 

structure, each multiplier uses different input data, so 

multipliers calculate values transmitted to the same node at a 
specific time. Therefore, since the result of one hidden layer 

node requires 196 multiplications, the result can be obtained 

at 14T. Since there are 14 nodes in the hidden layer, repeating 

this 14 times will get the results of all hidden layer nodes. That 

is in the second structure, the calculation of the hidden layer 

ends at 196T. 

 
Fig. 5  The third structure of the accelerator MAC 

When comparing the hardware structure, in the second 

structure, one adder is connected to each multiplier as shown 

in Fig. 4, but in the third structure, there are adders in a tree 

structure that adds all the results of 14 multiplication, as 

shown in Fig. 5. The second structure requires 14 20-bit 
adders, whereas, in the third architecture, there are 7 13-bit 

adders, 3 14-bit adders, 2 15-bit adders, one 16-bit adder, and 

finally, one 20-bit adder. That is, the number of adders is the 

same as 14, but since the number of bits of the adders of the 

third structure is smaller, the hardware area is also smaller. 

In addition, in the output layer, since 14 different input data 

are connected to 14 multipliers to calculate the result of one 

node, not used multipliers do not exist. In addition, since the 

number of nodes in the output layer is 10, the calculation of 

the output layer can be completed by repeating the calculation 

only 10 times. That is, it takes 206(=196+10)T. 
Compared to the second structure, the third structure can 

reduce the area and computation time. However, in the second 

structure, 196 input data must be read from memory only 

once, but in the third structure, 196 input data must be read 

from memory 14 times, that is, whenever the value of each 

node of the hidden layer is calculated. In other words, the third 

structure consumes more power than the second structure. 

The fourth structure is proposed by supplementing the 

shortcomings of two structures, as shown in Fig. 6. The MAC 

of the fourth structure is the same as the MAC of the third 

structure, but the calculation order is different. During the first 
T, in both structures, 14 multipliers calculate the value for the 

first node of the hidden layer using the input data x0~x13 and 

the weights w(0,0)
[1]~w(0,13)

 [1].  

 

 
Fig. 6  The fourth structure of the accelerator MAC 

In the third structure, the values for the first node of the 

hidden layer are calculated successively by changing both the 
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input data and the weights. This increases memory access. So, 

in the fourth structure, the first input data x0~x13 are fixed, and 

the weights are changed from w(0,0)
[1]~w(0,13)

 [1] to 

w(1,0)
[1]~w(1,13)

 [1]. Then, the sum of the multiplications 

calculated at the first T and the sum of the multiplications 

calculated at the second T become the values of different 

hidden layer nodes, so they are stored in different local 

registers. When this process is repeated 14 times, the 

multiplication of the input data x0~x13 is finished. And then, 

the input data are changed to x14~x27. By repeating the input 

data from x0~x13 to x182~x195, the results for all hidden layer 
nodes can be obtained. In summary, the fourth structure keeps 

the area small like the third structure and only accesses each 

data once like the second structure. 

TABLE Ⅳ 

COMPARISON OF AREA AND LATENCY OF THREE STRUCTURES 

 multiplier adder 
memory 
access 

latency

2 14 20-bit 14 adders 3,082 210T

3 14 
13-bit 7, 14-bit 3, 15-bit 2, 16-bit 1 
and 20-bit 1 adders 

5,684 206T

4 14 
13-bit 7, 14-bit 3, 15-bit 2, 16-bit 1 

and 20-bit 1 adders 
3,082 206T

Table Ⅳ shows the comparison of multipliers, adders, and 
memory accesses for three structures. They have 14 

multipliers in common. Two operands of the multiplier are 4- 

bit unsigned data and 8-bit signed data. Its result is 14-bit 

signed data. As described above, in terms of area, the third 

and fourth structures are better than the second structure, and 

in terms of memory accesses, the second and fourth structures 

are better than the third structure. In addition, the third and 

fourth structures are better than the second structure in terms 

of latency. Therefore, we make an accelerator for MNIST 

based on the fourth structure. 

C. Hardware design 

The proposed MNIST accelerator consists of a controller, 

a MAC block, a ReLU block, a MAX block, local registers, 

and memory. The ReLU block receives the MAC results from 

the hidden layer as inputs and determines output values with 

the ReLU function. The MAX block receives the MAC results 

from the output layer as inputs and selects the maximum 

value. While calculating the hidden layer and output layer, 

local registers store the node results of each layer until the 

calculation of each layer is completed. That is, in the hidden 
layer, the result of the first node comes out at the first T, and 

then it has to wait for 13T, so it is stored in a local register. 

When the calculation of the hidden layer is finished, the 14 

values stored in local registers are again given as inputs to the 

MAC to calculate the output layer. 

Weights and input data are stored in memory. The weight 

is 8 bits, and 196*14 bytes for the first layer and 14*10 bytes 

for the second layer are needed. However, since 14 bytes must 

be read at a time, the memory is physically composed of three 

32-bit (4 bytes) and one 16-bit (2 bytes), and addresses are 

arranged as shown in Fig. 7. The bias is 14 +10 bytes and is 

stored between addresses 0xCE0 and 0xD4F. The input data 
(196*4 bits) is stored between addresses 0xD00 to 0xD6F. 

The MAC block, which is the circuit with the fourth 

structure discussed above, consists of 14 multipliers and tree-

structured adders. However, the number of bits of multipliers 

and adders is expanded. The number of bits of data used in 

the hidden layer and the output layer is different. In the 

previous description, the number of bits is decided according 

to the hidden layer. In the hidden layer, the inputs of MAC are 

4-bit data and 8-bit weight and bias. However, since the inputs 

of the output layer are the ReLU results of the hidden layer, 

they are neither 4 bits nor 8 bits. The ReLU result is 20-bit 

data. Therefore, the two operands of the multiplier have 20 

bits and 8 bits, respectively, and the subsequent adders are 

expanded by 16 bits each compared to the hidden layer 
adders. So, we simulate again and reduce the result of the 

hidden layer to 8 bits. Therefore, both multiplier operands are 

modified to 8 bits, and the adders are increased by 4 bits from 

the previous one. During multiplication and addition, the 

calculation is performed with extended bits, and only the final 

values, which are the input values of the ReLU and MAX 

blocks, are truncated to 8 bits. Since the input data of the 

hidden layer are fixed at 4 bits, 4-bit zeros are added to make 

8-bit data. The structure of the modified MAC is shown in 

Fig. 8.  

 

 
Fig. 7  Memory allocation 

 

 
 Fig. 8   Modified structure of the accelerator MAC 

As seen in Equation (1), the bias values must be added to 

the MAC results before they are transferred to the ReLU or 

MAX block. However, as shown in Fig. 8, there is no adder 

for bias. This is because we use the bias value of each node as 

the initial value of local registers. Therefore, there is no need 

for additional hardware for bias, and latency can be reduced. 

III. RESULTS AND DISCUSSION 

The proposed accelerator was designed using Verilog-
HDL and the functions were verified in ModelSim. First, state 

machines in the controller were confirmed. As shown in Fig. 

9, three states L-state, X-state, and W-state were defined. L-

state distinguishes the hidden layer and the output layer. X-
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state indicates the state of the input data, and W-state indicates 

the state of the weight. When L-state has a value of 0, that is, 

during the hidden layer, X-state changes from 0 to 

13(=b1101). And, while X-state maintains one state, W-state 

changes 14 times. In output layer, L-state is 2(=b10), and the 

X-state changes 10 times. 

 

 
Fig. 9  Verilog simulation results for state machines 

Fig. 10 shows input/output data as well as state machines. 

The 14x14 pixels modified MNIST handwritten data, 9 and 2, 

are sequentially input into the MAC. The input data are 196 

(=14x14) one-dimensional arrays. However, 14 input data are 

read at a time because the number of multipliers is 14. As 

shown in Fig. 10, each row of the input image is read during 

the hidden layer processing. So, the simulation waveform 

appears as if the input image is rotated. Finally, it is confirmed 

that the input images are determined as '9' and '2', 

respectively. 

 

 
Fig. 10  Verilog simulation results for the accelerator 

After function verification in ModelSim, it was 
implemented using Xilinx ZYNQ ZC-702. The ZC-702 board 

consists of a Processing System (PS) containing an ARM 

Cortex-A9 processor and an FPGA Aritix-7 Programmable 

Logic (PL) for user-designed logic. PS and PL communicate 

by AXI bus and support interrupt. So, AXI4-Lite slave 

interface was added to the designed accelerator and then 

implemented in PL of ZC-702 board.  

The operation proceeds in the following order. The ARM 

processor writes weights, biases and input data in memory. It 

instructs the accelerator to start operation by setting the 

operation start register among the control registers of the 
accelerator. The accelerator starts operation by reading 

weight, bias, and input data from memory. When the 

operation is finished, the accelerator interrupts the processor 

to inform that the operation is completed. The processor reads 

a result value from the result value register. As shown in Fig. 

11, the result value determined by the accelerator and the 

image written in the memory are displayed on terminal. In 

Fig. 11, the image is judged as “2”, and it can be seen that the 

actually input image is also “2”. That is, it is confirmed that it 

operates correctly. 

 

  
Fig. 11 Implementation and test 

IV. CONCLUSION 

In this paper, we designed a low-power, low-area, 

handwritten digit recognition deep learning accelerator. In 

general, iterative training is performed on high-performance 

GPUs to find the optimal deep learning network, and the 

optimized network model has high precision. However, in the 
case of a handwritten digit recognizer, it is possible to 

recognize digits accurately enough without using a high-

performance GPU. Therefore, we conducted the training 

process in software and then went through the lighting process 

to become a low-power, low-area hardware accelerator while 

maintaining proper performance. The handwritten digit data 

MNIST is a 28x28 black and white image, and each pixel is 8 

bits. The MNIST data was converted into a one-dimensional 

array to light the network, and the circuit complexity was 

lowered by reducing 784 pixels to 196 pixels. A 2-layer fully 

connected network was established, and the hidden layer 
consisted of 14 nodes. By lowering the number of bits of 

weights and biases, the recognition performance was 

analyzed, and weights and biases were set as 8-bit fixed 

points. Then, the number of input data bits was lowered, and 

the recognition performance was analyzed, and the value of 

input data was changed to a 4-bit integer. After confirming 

the network model, we designed the hardware and verified the 

operation by selecting a structure that can reduce memory 

access and area. The designed hardware showed 94% 

accuracy as predicted in the algorithm stage and maintains a 

level similar to that determined by humans. Therefore, it is 

expected to be widely used in edge devices that require low 
area and low power. 
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