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 Abstract— Meta-heuristic algorithms have emerged as a powerful optimization tool for handling non-smooth complex optimization 

problems and also to address engineering and medical issues. However, the traditional methods face difficulty in tackling the 

multimodal non-linear optimization problems within the vast search space. In this paper, the Flower Pollination Algorithm has been 

improved using Dynamic switch probability to enhance the balance between exploitation and exploration for increasing its search 

ability, and the swap operator is used to diversify the population, which will increase the exploitation in getting the optimum solution. 

The performance of the improved algorithm has investigated on benchmark mathematical functions, and the results have been 

compared with the Standard Flower pollination Algorithm (SFPA), Genetic Algorithm, Bat Algorithm, Simulated annealing, Firefly 

Algorithm and Modified flower pollination algorithm. The ranking of the algorithms proves that our proposed algorithm IFPDSO has 

outperformed the above-discussed nature-inspired heuristic algorithms.  
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I. INTRODUCTION 

 Solving multifaceted optimization problems can be 
challenging when multiple and inconsistent design goals are 

considered. An emerging trend in using meta-heuristic 

algorithms to answer complex optimization problems, these 

algorithms have revealed great success in maintaining balance 

among inconsistent design goals. Most of the meta-heuristic 

algorithms have been established in recent decades. Many of 

these algorithms require certain parameters to show their best 

performance. For example, the Genetic Algorithm (GA) [1] 

requires considerable adjustment for population size, 

crossover rate and mutation. In the circumstance of Particle 

Swarm Optimization (PSO) [2], the same issue also appears, 

which depends on population size, weight of inertia and social 
parameters.  Similarly, Harmony Search (HS) [3] requires 

adjustment of harmony memory deliberation rate, harmony 

size, and tuning of pitch. As for Ant Colony Optimization 

(ACO) [4], choosing the correct evaporation rate, pheromone 

effect and heuristic function are essential. Some other 

successful stochastic algorithms are Bee Colony Algorithm 

[5], Artificial bee colony algorithm (ABC) [6], Cuckoo 

Search Algorithm (CS) [7], Bat Inspired Algorithm (BA)[8], 

Firefly algorithm (FA) [9], Simulated Annealing(SA)[10], 

Differential Evolution  (DE)[11] and Flower Pollination 

Algorithm (FPA)[12]. Literature shows that meta-heuristic 

algorithms cannot perform optimally for both exploration and 
exploitation simultaneously [13]. Therefore, hybrid 

techniques are more trendy among practitioners where one 

algorithm is used for exploration and another for exploitation 

to enhance the performance of algorithms [14]-[17]. 

In some cases, parameters are adjusted, and operators are 

changed to improve the efficiency of algorithms [18]. Flower 

Pollination Algorithm is one of the best algorithms in terms 

of minimal numbers of parameters, and it can be easily 

implemented and is also highly efficient [19]. The mentioned 

properties of the algorithm had motivated us to select it for 

enhancement. 

In the literature, Flower Pollination Algorithm has been 
improved by practitioners to address the Switch probability, 

global pollination and local pollination. The Local 

Neighborhood Search Strategy (LNSS) [20] is used to 

increase the local search-ability of FPA by diversifying the 
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local neighborhoods. Colonel search is introduced to control 

the local search space, in such a way that initially more global 

search as compared to the end of the search process. In [21], 

a static scaling factor is applied to control the mutation 

through the local pollination process and to enhance the 

convergence rate of the algorithm. In [16], switch probability 

is replaced by two dynamic weights to guide for fast 

convergence and to increase the stability. Differential 

Evolution and Flower Pollination Algorithms are hybridized 

to escape the FPA from local minima. Chaos theory and 

Flower Pollination algorithm are hybridized to enhance the 
convergence rate and accuracy of the optimal solution [22].  

In this paper, the proposed Flower Pollination Algorithm 

has two improvements over the Standard Flower Pollination 

Algorithm. The one is Dynamic switch probability and the 

second one is swap operator [23]. The Switch probability is 

an operator that controls the balance between diversification 

and intensification. The swap operator is used for 

modification in local search to enhance its efficiency and 

escape from trapping in multi-local minima [24]. The 

proposed algorithm is tested on benchmark optimization 

functions of multimodal and unimodal. It is evident from 
experimental results that the proposed algorithm, Improved 

Flower Pollination with Dynamic switching probability, and 

Swap operator (IFPDSO) relatively outperformed the typical 

Flower-Pollination Algorithm (FPA) and the other well-

known algorithms like Simulated Annealing (SA), Genetic 

Algorithm (GA), Firefly Algorithm (FF), Bat Inspired 

Algorithm (BA) and Modified flower pollination algorithm 

(MFPA). In Section II, we will discuss the Flower Pollination 

Algorithm in detail with its characteristics and the 

modifications of the proposed algorithm IFPDSO. In section 

III, the improved algorithm performance is examined and 
evaluated on well-known benchmark mathematical functions. 

In section IV, the conclusion is discussed. 

II.  MATERIALS AND METHOD 

This section describes the Standard Flower Pollination 

algorithm and the improvements have been done in Flower 

Pollination algorithm.  

A. Standard Flower Pollination Algorithm 

In 2012, Xing-She Yan developed the flower pollination 

algorithm (FPA) [12]. It is a nature-inspired metaheuristic, 

stochastic technique. The practitioner was inspired by the 

pollination conduct of various flowers to pollinate for 

reproduction. Some flowers only try to attract insects which 

help to gear up the pollination process. These pests are the 

main pollinators during the global pollination process. The 

practitioner focused on complex nonlinear problems that are 

not appropriately handled by conventional optimization 

methods. There are basically two types of pollination:  
 Biotic: this is a type of elongated distance or cross 

pollination which requires pollinators to execute it, such 

birds, pests, bees. Thus, the levy’s flight performs global 

search that covers 90% of overall pollination. 

 Abiotic: it is a self-pollination or local pollination which 

happens within a flower that does not need any 

pollinators. In this case, flowers pollinate through wind 

and diffusion. It is only 10% of pollination.  

 Constancy: It is the reproduction capacity of two similar 

flowers which can increase insects. 

 Switch Probability: It is helpful for controlling local 

pollination and global pollination. The switch 

probability p ε [0 1].   

Other features in the pollination process include flower 

constancy which can be measured as the reproduction 

probability and switch probability p ε [0,1] which is helpful 

to control the global and local pollination. The fixed value p= 

0.8 is slightly biased for exploitation. Global pollination is 
guaranteed with the help of creatures that ensure the best 

reproduction. It is denoted by “g*” and the mathematical 

representation for global pollination can be expressed as:    

                                                                                                                        �����  = ��� + 	 
�ʎ
� ��� −  �∗)                                        (1)      

                                                                                

In Equation (1) ‘��′ represents the solution vector in the 

iteration “t”, while “g*” is the finest existing solution among 

the overall iterations. where ‘γ’ represents a scaling factor 

which controls step size. In Equation (2) the ‘L’ is a levy’s 

distribution parameter that resembles the strong point of 

pollination.  

      
 ~ �ʎ ��ʎ
 �����ʎ�� �
���ʎ��
   �               � ≫  � > 0                   �2
  

L>0 for an extensive random walk  

  

 Where local pollination is illustrated in Equation (3).  
     ����� =  ���  +∈ � �%� − �&� 
                                                    �3
   

 

In Equation (3) where ‘ �%’ and ‘�&’ represent the pollen 

from various flowers of identical plant species, which 

fundamentally imitate the flower constancy in a partial 

neighborhood. On the other hand, if �%�  and  �&�   are selected 

from the identical species, it consistently becomes a local 

random walk where  ∈ is carefully chosen from a uniform 

distribution in the range [0, 1]. The Pseudo-code of the SFPA 

algorithm has been discussed below. 

1) The Pseudo-code of SFPA 

The pseudo-code is separated into three portions. The first 

portion represents the initialization of the population and its 

parameters. The second portion decides that either global 

pollination should occur or local pollination. In the third 

section, the solution is updated to display.   

 
1. Fitness function min or max f(x)with 

dimension, d. x =(x1,x2,x3,………………xd) 

2. Initialize the population of ‘n’ 

flowers with its random solutions  

3. Calculate the finest result g* from the 

preliminary random solutions 

4. Initialize the Switching probability p 

ε [0,1]  

5. While (t < Maximum-Iterations) 

6. For i = 1: n (total number of 

solutions) 

7. if rand < p 

8. Induce ‘d’ dimensional stepping Vector 

is L that follows the Levy’s 

distribution. 

462



9. Global pollination has implemented to 

get a new solution (���� 
10. else  

11. Local pollination will apply, to find 

the solution (����    
12. end if 

13. end For 

14. Calculate the new fitness (���� using    
objective function 

15. if fitness ((����) < fitness ((�� )       
(To minimize objective function) 

16. update flower (��       
17. end if 

18. end while 

19. output (best Minimum or Maximum) 

 

start

Initialization of population and its 

parameters of FPA , swap over rate

 calculate  random solution against 

each pollen

Evaluate  global best solution

Global pollination 

using Levy’s flight

Local pollination using  swap 

operator

Calculate  optimal solution

Update the global optimal 

result

apply 

condition

Out put

If rand > p

end

no

yes

Dynamic switch 

probability

 
 

Fig. 1    The proposed algorithm’s flowchart. 
 

B. Proposed Algorithm  

To address the problem of balancing between the 

exploration and exploitation, a number of practitioners 

introduced various modifications in SFPA to enhance its 

convergence rate and efficiency. In the above discussion, 

some modified versions of SFPA have been submitted by the 
authors in [20][16][19] [25][26][18].  All these practitioners 

have addressed one or more issues stated earlier but failed to 

handle all these problems simultaneously that have been 

identified in SFPA. Literature shows that the standard flower 

pollination algorithm is slightly weak in local optima for 

solving multimodal optimization problems [24], which may 

lead to trapping in local minima.   

In this research paper, An Improved Flower Pollination 

algorithm (IFPDSO) has been proposed by introducing 

Dynamic Switch probability and Swap Operator to tackle the 

identified issues. In Fig 1, flow of the proposed algorithm has 

been illustrated.  The Dynamic switch probability is applied 

to control the exploration and exploitation while the Swap 

operator is introduced to enhance the diversification of the 

population in the local search process to escape from being 
trapped in a local optimum. The random number epsilon ε of 

the uniform distribution is replaced with β ε [0 0.5] to enhance 

its exploitation capability.   

The Swap operator has been defined in the given below 

equation. 

(���� = {*+,-.             �/��                 �0�,1,2…………�
4+,-           5678+,-   [   � ] ; *5                 

                                    <       1,2,3 … … >                                   �4
                                                              

 

In Equation (4), ��& shows ‘kth’ dimension of the solution 

vector ‘i’ where ‘Sr’ represents the swap over rate which is 
0.4 to diversify the population to get the best local optimum 

and evade the premature convergence.                     

However, the static switch probability (p = 0.8) has been used 

in the original Flower Pollination Algorithm, which creates 

partiality between exploitation and exploration. The proposed 

algorithm will apply dynamic switch probability to adjust the 

balancing issue between global and local pollination to get an 

optimal solution. Dynamic switching probability can be 

illustrated in Equation (5). 

     P = 0.8 + 0.1�BC����D − E
/BC����D                          (5) 

 

In Equation (5), BC����D represents the maximum 

iterations while ‘t’ denotes current iteration. 

1) The proposed Algorithm’s Pseudocode  

The proposed algorithm begins with the initial population, 

switch probability which is followed by global pollination and 

local pollination, while in local pollination a swap operator 

has been presented. After completing each iteration, the 

optimal solution is updated hence dynamic switch probability 

is applied for the next iteration.      

 
1. Start 

2. Fitness function f(x) (min or max) with 

dimension dx =(x1,x2,x3 ,…x d) 

3. Initialization: population is ‘n’ number 

of flowers, swap over rate, random 

solutions  

4. Evaluate optimal solution, g* from the 

preliminary random results 

5. Initialize switch probability which lies 

in p ε  [0,1]  

6. While (t < Max-Iterations) 

7. For i = 1: n (Maximum solutions) 

8. if rand < p 

9. Find ‘d’ is dimensional step vector L 

that obeys Levy’s distribution 

10. Global pollination is implemented to 

achieve new solution (���� 
11. else    
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12. Local pollination is search process 

to Get solution (���� vector by using 
swap operator           

13. end if 

14. Find the new fitness (���� using a 
fitness function 

15. if fitness ((����) < fitness ((�� )       
(Minimization of function) 

16. Update (Initial solution) flower (��       
17. end if 

18. Implement the dynamic switch 

probability, p  

19. end for 

20. end while 

21. Output (Min or Max) optimal solution 

III. RESULTS AND DISCUSSION 

In this section experimental results have been discussed 

and have proved the outstanding performance of the proposed 

algorithm. The primary parameter setting is used to validate 

the performance of IFPDSO as compared to the six well-

known optimization algorithms in Table I.   

TABLE I 
THE PARAMETERS USED IN ALGORITHMS. 

Algorithms Initial setting of parameters 

FPA 

 

n = 60, switch probability static P = 0.8, scaling factor 

γ = 0.01, step Levy flight is  λ= 1.5 

IFPDSO n = 60, switch probability initially P = 0.8,  γ = 0.01,  

step Levy flight is λ= 1.5, Swapping rate is Sr = 0.4,  

range Beta 0.1< β <0.9 

MFPA n = 60, switch probability P = 0.8, scaling factors ist 

 γ 1 = 1 , second γ2 = 3, step Levy flight is λ = 1.5, 

and cloning array = [8 7 6 5 4 3 2 1 1 1 1 1 1] 

GA n= 60, Cross over =0.8 and mutation function with 

Scale = 1 (Gaussian) and shrink = 1 

BAT n=60, pulse rate = 0.5 and minimum f  = 0, Loudness 

= 0.5, maximum f = 2 

FF 

 

n= 60, Randomness (alpha = 0.25), Absorption 

efficient (gamma = 1, minimum attractiveness: firefly 

is (beta = 0.2),), γ = 0.01, Levy flight step λ= 1.5 

SA Annealing Fnc: Fast annealing, Initial temperature = 

100. Re-annealing interval = 100 

 

The proposed algorithm is evaluated on the 18 multimodal 

and unimodal complex functions. The results of the Modified 
Flower Pollination Algorithm (MFPA) are selected from [18], 

for a fair comparison, the number of generations for each 

algorithm N= 1500, population size n= 50 and n= 30 

independent runs are executed.   The performance will be 

analyzed by ranking the proposed algorithm IFPDSO and five 

other algorithms. The mean absolute error (MAE) is the first 

statistical analysis. 
 

BGH =  ∑J�0� |L�  −  M�| N                                                    �6
 
Where L� ,  indicate the mean value, bi is the best optimal 

solution and N is the number of independent runs. In Table: 

IV.  The maximum cost (Max), minimum cost (Min), the 
average cost (Mean) and the standard deviation (Std.) are the 

results of random runs of every algorithm for the benchmark 

functions in Table V. The results of the proposed algorithm 

are highlighted in bold font.  

TABLE II 
RANKING OF THE ALGORITHMS (UNIMODAL) 

Algorithm MAE Rank 

IFPDSO 3.375E-57 1 

MFPA 6.3858E-33 2 

FPA 4.9812E-12 3 

GA 6.5606E-12 4 

BAT 2.1499E-10 5 

FF 3.62159E-9 6 

SA 4.3 2669E-4 7 

TABLE III 
RANKING OF THE ALGORITHMS (MULTIMODAL) 

Algorithm MAE Rank 

IFPDSO 9.87E-17 1 

MFPA 0.067145 2 

FPA 0.0671478 3 

FF 12.84937 4 

BAT 15.125612 5 

SA 45.140746 6 

GA 109.5325 7 

TABLE IV 
RANKING OF SEVEN ALGORITHMS (ALL FUNCTIONS) 

Algorithm MAE Rank 

IFPDSO 5.565E-17 1 

MFPA 0.0524615 2 

FPA 0.0559426 3 

FF 10.055946 4 

BAT 11.837543 5 

SA 35.327635 6 

GA 85.721286 7 

 

Table II shows the ranking of the algorithms in solving the 

unimodal functions while Table III and Table IV represent the 

ranking for multi-modal benchmark function and overall 

average ranking using Mean Absolute error. The ranking 

shows that the proposed IFPDSO algorithm performs better 

than GA, FF, SA, BAT, MFPA and standard Flower 

Pollination algorithm.  

Secondly, the comparison on convergence rate and stability 

between the proposed algorithm, SFPA and other well-known 

meta-heuristic algorithms which have been mentioned has 
been carried out. All these figures which include Fig.2 to 

Fig.7 have been plotted against the number of generations and 

minimum cost. In each graph, the solid red line shows the 

presentation of the proposed algorithm. The analysis proves 

remarkable convergence of the proposed algorithm in each 

plot of benchmark functions. All the graphs have been 

generated in Mat lab software R2018 by using the system 

Lenovo i3 ThinkPad. 
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TABLE V 
BENCHMARK FUNCTIONS 

No. Functions Equation of Functions Range 

1 Sphere function f(x) = ∑ PQRS0T  [-5,5] 

2 3- hump camel function F(x,y) = QPQ −  TU. VPW   + PX XY +  PZ  + ZQ   [-5,5] 

3 Powell function F(x)=∑ [� �[�\2 + 10�[�\1 
1]/[�0�   +5� �[�\� − �[�  
1 + � �[�\1 − 2�[�\�
[ +  10� �[�\2 − �[� 
[] [-4,5] 

4 Matyas function F(x)= 0.26(PTQ + PQQ) -- 0.48PTPQ [-10,10] 

5 Griewank function F(x)= 1+   ∑ PSQWUUU_S0T   − ∏ abc �_S0T PS√S 
 [-600,600] 

6 Ackley function F(x) = −C e�f g−Mh�
] ∑ ��1]�0�   i − exp ��

] ∑ m��1 ]�0� � + C + exp �1
 
 

[-32,32] 

7 Easom’s function n�P
 = � −T
R�T o abc� PS
 pqr s− t  PS − �PS − u 
Q
R

S0T
  v

R

S0T
 [-100 100] 

8 

Rastrigin,s function 

 
w��
 =  x ∗ 10 + t� ��1 − 10 ∗ cos�2���



]

�0�
 [-5.1 5.1] 

9 Zaharov’s function n�P
 = t PSQ + � TQ t SPS
R

S0T

Q + � TQ t SPS

R

S0T

W  − V

R

S0Q
 [-5   10] 

10 
Rosenbrock’s function 

 
w��
 =  t 100����� − ��1
1

]

�0�
+ � �� − 1
1 [-5   5] 

11 Cross-in-tray function w��
 = −0.0001| |sin��� 
 sin��1
 exp |�100 − ���1 + �11�  ��� + 1
 .� 

[-10 10] 

 

12 
Drop- wave function 

 w��
 = − 1 + cos � ���1 + �11�� 

0.5���1 + �11
 + 2  

[-5.1 5.1] 

 

13 

Eggholder function 

 
w��
 = −��1 +  47
+ sin gh� �1 + ��1 + 47�i − �� sin gh� �� + ��1 + 47�i  

[-5.1 5.1] 

 

14 

 

Holder table function 

 
w��
 = −| sin���
 cos��1
 exp |�1 − h�������

� �� |  [-10 10] 

 

15 
Schaffer function N2 

 
w��
 = 0.5 + ���1���1 + �11
 − 0.5 

| 1 + 0.001���1 + �11
|1 

[-100 100] 

 

16 Shubert function w��
 = �∑ �m���� + 1
�� + �
��0� 
�∑ �m���� + 1
�� + �
��0� 
  [-5.1 5.1] 

17 

Schwefel function 

 

 
w��
 = 418.9829> − t  ��sin ��|��|


]

�0�
 [-500 500] 

18 Beale function w��
 = �1.5 + �� + ���1
1 + �2.25 − �� + ���11
1 + �2.625 − �� + ���12
1 [-4.5 4.5] 

   

TABLE VI 
STATISTICAL ANALYSIS OF ALGORITHMS 

Function Algo Min Max Mean Std 

Sphere GA 5.992e-16 1.582e-13 1.362e-13 2.413e-13 

Function 
BAT 

 
8.973e-13 1.293e-10 1.923e-11 2.142-11 

 SA 5.524e-37 5.524e-36 6.403e-36 1.354e-36 

 FF 1.107e-12 1.606e-10 3.742e-11 3.726e-11 

 FPA 8.543e-33 2.543e-25 7.923e-27 3.753e-26 

 MFPA 2.989e-70 6.011e-60 2.005e-61 1.097e-60 

 IFPDSO 4.14e-186 1.91e-180 1.97e-181 0 

Three GA 7.87E-09 2.47E-07 6.19E-08 7.60E-08 

Hump ABC 1.64E-26 5.17E-24 1.43E-24 1.81E-24 

Camel SA 3.94E-27 1.12E-24 2.95E-25 4.54E-25 

Function FPA 1.32E-27 1.98E-20 2.02E-21 6.24E-21 

/ IFPDSO 2.73e-110 5.62e-100 5.62e-101 1.77e-100 

Powell GA 5.523e-14 1.883e-12 1.032e-11 1.192e-11 

Sum ABC 1.96E-34 6.58E-33 7.80E-33 1.64E-32 

Function SA 7.41E-31 1.36E-27 1.70E-28 4.22E-28 

 IFPDSO 4.69E-156 1.74E-148 2.89E-149 5.38E-149 
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Matyas,s GA 8.932e-14 1.142e-11 2.684e-11 3.952e-11 

Function BAT 1.05E-17 6.70E-16 2.13E-16 2.07E-16 

 SA 1.07E-25 7.40E-24 3.64E-24 3.35E-24 

 FF 7.501e-13 5.753e-11 2.563e-11 1.354e-11 

 FPA 2.64E-36 6.20E-25 6.22E-28 1.85e-27 

 MFPA 1.44E-68 5.66E-50 2.08E-51 1.12E-50 

 IFPDSO 6.52E-63 1.15E-52 1.49E-56 3.64E-56 

Griewank GA 3.72E-06 8.30E-02 2.49E-02 1.27E-02 

Function 
BAT 

 
2.31E-12 1.40E-01 1.86E-01 1.42E-01 

 FF 3.575e-8 7.396e-3 6.196e-3 1.883e-3 

 SA 0 0 0 0 

 FPA 1.60E-08 2.91E-05 8.73E-06 8.43E-05 

 MFPA 0 0 0 0 

 IFPDSO 0 0 0 0 

Easom GA -1 -1 -1 2.12E-13 

Function BAT -1 0 -0.3756 0.3795 

 SA -1 0 -0.6068 0.5432 

 FPA -1 -1 -1 0 

 MFPA -1 -1 -1 0 

 IFPDSO -1 -1 -1 0 

Rastrigin’s GA 3.72E-13 8.30E-02 2.49E-02 1.27E-01 

Function BAT 2.31E-10 1.42E-01 1.86E-01 1.42E-01 

 FF 3.575e-10 7.396e-8 6.196e-9 1.883e-9 

 SA 3.82E-8 8.84E-01 5.74E-01 6.84E-01 

 FPA 0 2.91E-12 8.73E-13 8.43E-13 

 MFPA 0 0 0 0 

 IFPDSO 0 0 0 0 

Ackley GA 1.27E-07 7.20E-06 1.96E-06 2.12E-06 

Function BAT 5.79E-06 6.2578 2.46432 2.20356 

 FF 9.278E-6 1.334E-4 8.177E-5 3.157E-5 

 SA 3.26E-13 3.39E-12 1.60E-12 1.07E-12 

 FPA 3.22E-14 2.12E-12 6.01E-12 8.07E-12 

 MFPA 8.87E-16 8.88E-16 8.88E-16 0 

 IFPDSO 8.880E-16 8.880E-16 8.880E-16 0 

Zakharov GA 8.932e-16 1.142e-12 2.684e-13 3.952e-13 

Function BAT 1.05E-12 6.70E-10 2.13E-11 2.07E-11 

 SA 1.07E-09 7.40E-03 3.64E-05 3.35E-04 

 FF 7.501e-13 5.753e-10 2.563e-10 1.354e-10 

 FPA 2.64E-31 6.20E-25 6.22E-26 1.952e-26 

 MFPA 1.24E-71 5.57E-42 2.18E-44 1.03E-43 

 IFPDSO 6.52e-158 1.15e-154 1.49e-155 0 

Rosenbrock GA 3.72E-06 8.30E-03 2.49E-03 1.27E-04 

Function BAT 2.31E-8 1.4056 1.96E-01 1.32E-01 

 FF 3.575e-09 7.396e-07 6.196e-07 1.883e-07 

 SA 2.54E-03 6.7234 4.5673 3.5642 

 FPA 1.60E-22 2.91E-19 8.73E-20 8.43E-19 

 MFPA 0 9.66E-30 3.30E-31 1.76E-30 

 IFPDSO 0 3.28E-29 5.61E-30 1.34E-29 

Cross-in-

tray 
GA 

-2.06408 

 

--2.03473 

 

-2.0386 

 

5.660E-03 

 

Function BAT -2.16261 -2.16261 -2.16261 1.70E-11 

 FF -2.06251 -2.06251 -2.06251 1.50E-11 

 SA -2.06261 -2.05231 -2.06103 1.07E-03 

 FPA -2.06251 -2.06251 -2.06261 8.59E-11 

 MFPA -2.06260 -2.06260 -2.06260 9.04E-16 

 IFPDSO -2.06261 -2.06261 -2.06261 1.35E-15 

Drop-

wave 
GA -0.99996 -0.96324 -0.95722 3.01E-02 

Function BAT -1 -0.7875 -0.93335 3.41E-02 

 FF -1 -1 -1 1.61E-09 

 SA -0.9999 -0.78579 -0.9298 3.41E-01 

 FPA -1 -1 -1 8.07E-10 

 MFPA -1 -1 -1 0 

 IFPDSO -1 -1 -1 0 

Egg 

holder 
GA -951.963 -940.342 -941.642 109.785 

Function BAT -955.608 -943.305 -947.152 179.056 

 SA -959.608 -886.432 -895.342 166.542 

 FF -959.608 -954.125 -954.634 186.503 

 FPA -959.608 -959.608 -959.608 1.15e-13 

 MFPA -959.608 -959.608 -959.608 1.15e-13 

 IFPDSO 
-959.608 

 

-959.608 

 

-959.608 

 

1.15E-13 

 
Holder 

Table 
GA 3.72E-06 8.30E-03 2.49E-03 1.27E-04 

Function BAT 2.31E-8 1.4056 1.96E-01 1.32E-01 

 FF 3.575e-09 7.396e-07 6.196e-07 1.883e-07 

 SA 2.54E-03 6.7234 4.5673 3.5642 

 FPA -19.2084 -19.2084 -19.2084 
3.62E-15 

 

 MFPA -19.2085 -19.2085 -19.2085 7.81E-15 

 IFPDSO -19.2085 -19.2085 -19.2085 3.61E-15 

Scheffer 

N2 
GA 1.89E-11 1.50E-04 1.14E-05 1.49E- 

Function BAT 1.82E-14 1.48E-01 3.40E-01 
3.79E-01 

 

 FF 1.01E-12 5.54E-11 1.72E-11 1.48E-11 

      

 SA 9.61E-03 
1.50E-01 

 

8.22E-01 

 

6.07E-01 

 

 FPA 0 0 0 0 

 MFPA 0 0 0 0 

 IFPDSO 0 0 0 0 

      

Shubert GA -69.9381 -16.611 -24;3817 13.1135 

Function BAT -186.731 -71.4109 -173.261 31.9251 

 SA -186.731 -186.731 -186.731 9.25E-07 

 FF -186.731 -186.731 -186.731 8.55e-08 

 FPA -186.730 -186.730 -186.730 1.56E-13 

 MFPA -186.730 -186.730 -186.730 5.38E-15 

 IFPDSO 
-186.731 

 

-186.731 

 

-186.731 

 

1.66E-13 

 

Function 
BAT 

 
2.55E-05 1.40E-01 1.96E-02 1.32E-06 

 FF 2.55E-05 7.396e-01 6.196e-02 1.883e-07 

 SA 2.65E-05 2.55E-05 2.54E-05 0 

 FPA 
2.63E-05  
 

2.56E-05 
 

2.54E-05 
 

       0 

 MFPA 2.55E-05 2.560E-05 2.551E-05        0 

 IFPDSO 2.550E-05 2.550E-05 2.550E-05 0 

Beal GA -2.0548 --2.0373 -2.0346 5.87E-03 

Function 
BAT 

 
2.26E-12 6.26E-01 1.17E-01 

2.70E-01 

 

 FF 3.52E-13 2.06E-10 6.25E-11 1.40E-11 

 SA 3.164E-6 4.73E-02 3.30E-3 1.7E-3 

 FPA 7.06E-27 2.76E-20 1.46E-21 
8.58E-21 

 

 MFPA 0 0 0 0 

 IFPDSO 0 0 0 0 
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Fig. 2  The Min cost for Unimodal Sphere Function 

 

Fig. 3  The Min cost for unimodal Three Hump Camel function 

 

Fig. 4  The cost for unimodal Powell Function 

The performance of IFPDSO is better because it inherits 

proper exploitation in the form of scaling factor ‘ℽ’ and Levy 

flight ‘Ⅼ’ in the global pollination. The exploitation capability 

is improved by limiting the parameter epsilon ‘ε’ (uniform 

distribution) and swap operator to avoid premature 

convergence.  

 

Fig. 5  The Cost for Multimodal Matyas Function 

 

Fig. 6  The Cost for Multimodal Griewank Function 

 

Fig. 7  The Cost for Multimodal Ackley Function 

 The right balance between exploration and exploitation is 

produced by the dynamic switch probability in order to 

increase its search ability. Another advantage of the IFPDSO 

algorithm is that it has a smaller number of parameters which 
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will enhance its efficiency and speed up the processing for 

solving complex optimization problems. Moreover, its 

complexity is low as compared to other versions of the 

standard Flower Pollination Algorithm. 

IV.  CONCLUSION 

In the last few decades, we have seen many applications of 

nature-inspired meta-heuristic techniques in solving various 
types of non-polynomial problems. The complex optimization 

problems have drawn the attraction of researchers due to a 

wide variety of issues that possess the nature of optimization. 

Therefore, new optimization algorithms have been introduced 

to achieve better results, for example gradient-based and 

stochastic techniques, but swarm intelligence has become the 

most useful tool among evolutionary algorithms. The standard 

flower pollination is also one of the best nature-inspired 

metaheuristic algorithms. It has many advantages yet there are 

a few drawbacks over other swarm intelligence techniques. 

Various types of modifications are introduced to overcome 
these drawbacks, but most of these approaches fail in 

obtaining the most optimum solution for some complex 

problems. In this study, the flower pollination algorithm is 

improved by modification in local pollination using the swap 

operator and dynamic switch probability. It has proved to be 

a robust optimization method with fewer parameters. The 

above results prove that the proposed algorithm 

comparatively performed better than the flower pollination 

algorithm, Genetic Algorithm, Simulated Annealing and Bat 

Algorithm, Firefly Algorithm and Modified Flower 

Pollination Algorithm. But the research shows that in 

optimization problems there is a room for further 
improvement. 
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