










Fig. 9 to 12 show images of the two environments 

examined in the experiment. 

Fig. 9 shows the results obtained when the road surface has 

many complex edge components, including the shadows of 

buildings and trees. While camera sensors encounter multiple 

problems, Fig. 10 shows that the proposed method can 

estimate the road surface without difficulty. 

Fig. 12 shows that the proposed method could estimate the 

road surface even when there were various markings on the 

road surface, such as speed limits, cross walks, and lane 

demarcations. 

IV. CONCLUSION 

Our proposed method involves two steps. First, it uses a 

single camera and deep learning to produce a depth map, with 

PyD-Net code and a deep neural network with a pyramid form 

employed for rapid calculation. Since PyD-Net has 

significantly fewer parameters than a convolutional neural 

network, high-speed calculation is possible. Then, using the 
obtained depth map, a normal vector is obtained at each point 

in the image; these are then quantized and clustered for real-

time operation, which is much faster. Our method requires 

very few calculations regardless of the environmental 

conditions and changes in the image. The method enables 

real-time estimation with no drop in performance. We plan to 

conduct additional experiments to identify other applications 

using a single camera, such as augmented reality applications. 
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