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Abstract— Estimating a road surface or planes for applying AR (Augmented Reality) or an autonomous vehicle using a camera requires 

significant computation. Vision sensors have lower accuracy in distance measurement than other types of sensor, and have the difficulty 

that additional algorithms for estimating data must be included. However, using a camera has the advantage of being able to extract 

various information such as weather conditions, sign information, and road markings that are difficult to measure with other sensors. 

Various methods differing in sensor type and configuration have been applied. Many of the existing studies had generally researched 

by performing the depth estimation after the feature extraction. However, recent studies have suggested using deep learning to skip 

multiple processes and use a single DNN (Deep Neural Network). Also, a method using a limited single camera instead of a method 

using a plurality of sensors has been proposed. This paper presents a single-camera method that performs quickly and efficiently by 

employing a DNN to extract distance information using a single camera, and proposes a modified method for using a depth map to 

obtain real-time surface characteristics. First, a DNN is used to estimate the depth map, and then for quick operation, normal vector 

that can connect similar planes to depth is calculated, and a clustering method that can be connected is provided. An experiment is used 

to show the validity of our method, and to evaluate the calculation time. 
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I. INTRODUCTION 

Many studies have used camera sensors in augmented 

reality, and for autonomous driving. Considerable 

information can be extracted from an image. However, in 

computer vision, various issues arise due to the large amount 

of data involved and poorly posed problems [1]. With the 

evolution of deep learning techniques and increases in 

computing power, extensive research has been conducted on 
camera sensors [2]. This paper determines the value of each 

pixel for estimating distance quickly, which is difficult with a 

single camera, using a deep neural network with a single state-

of-the-art camera [3]. We modify the method used for 

extracting the plane to estimate the road surface in real time. 

When using a camera, distance information is generally 

expressed in terms of depth or disparity. With an active sensor, 

a method that emits and receives a specific signal can be used 

to measure distances directly. It is possible to obtain red-

green-blue plus depth data by adding an infrared sensor, such 

as a Kinect sensor, to the measurement system [4], [5]. Using 

a passive method, two cameras are calibrated; the difference 
in the distance to the same point between the left and right 

cameras can be used to obtain a short distance when the 

distance between the two cameras is sufficiently large. 

Another method is based on the binocular difference, which 

is a short distance [6], [7]. When using a single camera, the 

structure-from-motion method, which estimates the 

difference in three-dimensional distance while tracking 

multiple identical points that change over time, is also widely 

applied [8-10]. When using a single camera, pixel differences 

are typically not transformed into a distance immediately, but 

this can be done under certain conditions. 
Zhan proposed an unsupervised learning method that 

models points in an image according to one real-world point 

as the camera moves over time [11], [12]. Godard et al. 

suggested a technique to estimate the depth map and ego-

motion simultaneously using three loss functions to improve 

the monocular depth estimation. They also proposed a new 

matching loss function to handle hidden pixels, a simple auto-

masking method for use when there is no movement relative 

to the camera, and a loss function to reduce depth artifacts 
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[13]. They proposed multi-scale appearance matching loss 

that runs at the input resolution. With that method, distances 

can be estimated based on a single camera image for 

autonomous vehicle applications. However, while these deep-

learning methods can provide useful results, they require 

many parameters as the depth of the network increases, which 

increases the computation requirements [14]. Increasing the 

number of calculations in turn increases the processing time 

and power consumption. Poggi suggested a way to solve these 

problems by using a six-step method to simplify a single 

image, transferring the intermediate results of a small-scale 
network to a larger one with better performance [3]. Fig. 1 is 

an example of the network proposed by Poggi. 

The first step when using the proposed network is to pass 

through the convolution layer in two-stride increments, which 

causes the image to shrink by a factor of two. The next step 

involves passing through five convolution layers, which 

results in a smaller image. This requires fewer parameters 

than most networks. For example, the Visual Geometry 

Group model [15] requires 31 million parameters, while the 

proposed network requires only 1,000,000, i.e., about 6.12% 

of the parameters. Consequently, the calculation time is about 

20.3% shorter. 

Here, we show how to estimate road surfaces using a depth 
map and our novel methods. Then, we present a modified 

method for estimating the road surface quickly. The position 

of each pixel in the image obtained using the depth map can 

be mapped to the world coordinate system; the mapped points 

form a point cloud. We also propose a modified clustering 

method. By estimating the existing plane, the road surface is 

known to be a certain distance from an extrinsic parameter 

(the center of the car), and an area having certain values in the 

point cloud is taken to be the road surface. To connect the 

planes, the normal vector is obtained. While these methods 

are somewhat basic, they require very little computation and 
are suitable for estimating road surfaces in real time. We 

confirm the usefulness of the proposed method 

experimentally and evaluate the calculation time. 

II. MATERIALS AND METHOD 

Fig. 2 is an image from the Karlsruhe Institute of 

Technology and Toyota Technological Institute (KITTI) 

public dataset for autonomous vehicle research. This dataset 

comprises data obtained using multiple cameras, light 
detection and ranging (LIDAR), the Global Positioning 

System (GPS), and in-car sensors [16], [17]. It is widely used 

because it contains a large amount of manually labeled data. 

Here, we select some KITTI images to demonstrate the 

usefulness of the proposed method. 

Fig. 2 KITTI dataset image. 

Fig. 1 Depth map estimation using a single camera in real time [3]. 
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Fig. 3 shows the results obtained on GitHub using PyD-Net 

code by Poggi, who proposed the fast monocular depth 

estimate method [18]. In the depth map, bright pixels indicate 

near distances, while dark areas are far from the camera. 

Compared to Fig. 2, the road surface and pillars on the left 

appear bright, while an empty area that can be assumed to be 

at infinity is black. In PyD-Net, the depth estimation and 

calculation time are closely linked to the image resolution and 

performance of the hardware used [3]. 

We propose a method for estimating the road surface in real 

time using depth estimates. We modified Holz’s method to 

Fig. 3 Results obtained using the fast monocular depth estimation method. 

Fig. 6 Image of the normal vector value of the z-axis on the front–rear axis in the camera world coordinate system. 

Fig. 4 Image of the normal vector value of the x-axis on the left–right axis in the camera world coordinate system. 

Fig. 5 Image of the normal vector value of the y-axis in the vertical axis in the camera world coordinate system. 
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enable real-time performance [19]. First, if the image in Fig. 

3 is � , the value of each pixel can be expressed as �� =
��� �� ���	. Here, u means the left and right of the image 
and v means the top and bottom. To obtain the road surface, 

these values are changed to the world coordinate system via 

the camera ’ s intrinsic parameter K. The associated 

expression is �
 = ��� �� ��	 when using the real-world 
value of each image point. The value of K can be found in the 

KITTI dataset. The transformed equation is expressed as 

equation (1), where ��� is the inverse matrix of the internal 

parameters of the camera [20], [21]. 

�
 = �����   (1) 

Then, with respect to the normal vector value thus obtained, 

and assuming that the plane or road surface we want to obtain 

has a large area, points are selected at regular intervals s. Here, 

we used �
� = ���� ��� �� �	  and intervals of five pixels to 
significantly reduce the number of calculations. Then, to 

obtain the values in the image to the left and right of each 
image point, we determine three vectors: one on the x-axis, a 

second on the y-axis for the up and down values, and a third 

on the z-axis for in front of and behind values. In turn, these 

are used to obtain the unit normal vector �
 =
��� �� ��	  [22]. Then, the values are quantized to 
cluster similar normal vector values. Assuming that the 

quantized value of a certain size is q, the normal vector can be 

expressed as: 

�
� = �
��
�

��
�

��
� �
	
                                   (2) 

After quantization, the value �
�  of each normal vector is 

the same as in Fig. 4 to 6. 

In Fig. 6, the road surface to be detected has a constant z-

axis (–) value, obtained based on position information for the 

automobile provided by the camera. Using these values, the 

value of �
�  is selected on a histogram, and a continuous area 

with a certain minimum size is determined to be the road 

surface. The formula for the histogram is as follows, where ��⃗  
represents the normal vector derived from equation (2).  

�(��⃗ ) = ∑ ��⃗ 
!"�    (3) 

The clustering results that enable these quick and simple 

operations are the same as in Fig. 7 and 8, and can be obtained 

in 20 ms or less. 

 

III. RESULTS AND DISCUSSION 

Our experiment used the KITTI dataset, which is suitable 

because it contains experimental data obtained under multiple 

conditions, and some labeling data specifically related to 
automobiles. The computer used had an Intel i7-8700 CPU, 

16 GB of memory, and a GTX 1070Ti graphics card. 

However, in the experiments and evaluations, the graphics 

processing unit (GPU) was not used for real-time operations, 

and will not be used in future embedded systems. The 

development environment was based on Python (ver. 3.7), 

and the library was implemented using TensorFlow (ver. 1.8). 

The calculation involved two steps. Fast monocular depth 

estimation (step 1) took an average of 254.73 ms, while the 

road surface clustering process (step 2) took an average of 

17.80 ms, for a total of 272.53 ms. Therefore, it was possible 
to operate at a speed of about 3.66 Hz. 

 

 

Fig. 7 Road surface estimated using the proposed method. The x- (blue), y- (green), and z-axes (red) are shown. 

Fig. 8 The complete image, including the estimated road surface. 
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Fig. 9 Input image with strong edge components behind obstacles, such as buildings and trees along the road. 

Fig. 10 The proposed method estimates the road surface by looking behind obstacles, such as trees along the road. 

Fig. 11 Input image of a road in which speed and cross walk signs are strong edge components. 

Fig. 12 The proposed method obtained a good result despite the road signs. 
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Fig. 9 to 12 show images of the two environments 

examined in the experiment. 

Fig. 9 shows the results obtained when the road surface has 

many complex edge components, including the shadows of 

buildings and trees. While camera sensors encounter multiple 

problems, Fig. 10 shows that the proposed method can 

estimate the road surface without difficulty. 

Fig. 12 shows that the proposed method could estimate the 

road surface even when there were various markings on the 

road surface, such as speed limits, cross walks, and lane 

demarcations. 

IV. CONCLUSION 

Our proposed method involves two steps. First, it uses a 

single camera and deep learning to produce a depth map, with 

PyD-Net code and a deep neural network with a pyramid form 

employed for rapid calculation. Since PyD-Net has 

significantly fewer parameters than a convolutional neural 

network, high-speed calculation is possible. Then, using the 
obtained depth map, a normal vector is obtained at each point 

in the image; these are then quantized and clustered for real-

time operation, which is much faster. Our method requires 

very few calculations regardless of the environmental 

conditions and changes in the image. The method enables 

real-time estimation with no drop in performance. We plan to 

conduct additional experiments to identify other applications 

using a single camera, such as augmented reality applications. 
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