
127

A Review of Defense Against Slow HTTP Attack

Suroto #

Department of Information System, Faculty of Engineering, Batam University, Batam, Indonesia

 E-mail: zhuroto@yahoo.co.uk

Abstract— Every web server poses a risk to network security threats. One of them is a threat of Slow HTTP Attack. Slow HTTP

Attack exploits the working methods of the HTTP protocol, where it requires that every request from the client be fully accepted by

the server before it is processed. If the HTTP request is incomplete, or if the transfer rate is very low, the server remains busy waiting

for the rest of the data. If the server is storing too many busy resources, there is a denial of service. Internet users can exploit such

vulnerabilities, send incomplete data packets deliberately and requests repeatedly. When a web server is in a public network or the

Internet, then protecting the computer and network security is an important issue. After identifying and analyzing how the Slow

HTTP attack works, as well as its attack detection, this paper describes a portfolio of the work system, how to detect and how to

defense against the Slow HTTP attack.

Keywords— Slow HTTP Attack, Web Server Exploit, Denial of Service, DoS

I. INTRODUCTION

Along with the rapid development of network technology,

also increased threats to network or computer security. So

that emerged various types of threats or attacks against

computers and networks. One of attack types is a denial of

service attack (DoS Attack). A DoS attack is a security

intrusion action by attackers aimed to prevents legitimate

users from accessing targeted host or other network

resources.

 Denial of Service Attack is generally made by flooding

the server or host so that the victim's host runs out of

resources (memory, CPU, traffic). This condition makes it

unable to serve other users. Flooding is difficult to

overcome, not enough just by rebooting, like other attacks.

There are several variants of DoS attack. No less than 35

variants of this attack.[99] Each variant has different

characteristics in terms of its attack. But they have the same

effect, giving rise to a denial of service.

Slow HTTP attack is one of them. Slow HTTP Attack

exploits the working methods of the HTTP protocol, where it

requires that every request from the client be fully accepted

by the server before it is processed. If the HTTP request is

incomplete, or if the transfer rate is very low, the server

remains busy waiting for the rest of the data. If the server is

storing too many busy resources, then this creates a denial of

service.

This enables an attacker to restrict access to a specific

server with the very low utilization of bandwidth. This breed

of DoS attack is starkly different from other DoS attacks

such as SYN flood attacks which misuse the TCP SYN

(synchronization) segment during a TCP three-way-

handshake[4].

Therefore knowledge of what is a Slow HTTP attack, the

types of attacks, how it works and the existing defense

methods, becomes an important thing to have by anyone

who works in the area of network security.

This paper aimed to review existing literature on defense

against Slow HTTP attack. The structure of this paper has

been organized as follows. Section I discusses a few papers

background. Section II is dedicated to discuss

comprehensive, relevant literature survey of existing

defense against slow HTTP attack and elaboration of the

practical usability of the defense system. Section III shows

the findings made from the theoretical study and a brief

discussion of key points about the different type of defense

method and Section IV concludes the paper with attention on

the theoretical analysis made on the ways of defense.

II. MATERIAL AND METHOD

A basic understanding of HTTP, the Denial of Service

(DoS), Slow HTTP, are necessary.

A. HTTP

One of the most popular application protocol used on the

Internet is HTTP. HTTP stands for "Hypertext Transfer

Protocol." HTTP is an application protocol that runs on top

of the TCP/IP suite of protocols. The entire World Wide

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 1 (2017) NO 4

e-ISSN : 2549-9904

ISSN : 2549-9610

128

Web uses this protocol. When we opened a web page, our

browser probably has sent over 40 HTTP requests and

received HTTP responses for each[10]. An HTTP headers

are the core part of these HTTP requests and responses, and

they carry information about the client browser, the

requested page, the server and more[10].

As illustrated in figure 1, an HTTP client sends a request

message to an HTTP server. The server, in turn, returns a

response message.

Fig. 1 HTTP Request message and response message

A program on the client side, called ‘browser’ will

perform HTTP request to the server. The web browser is an

HTTP client. Any Web server machine contains web page

files (text, graphic images, sound, video, and other

multimedia files) and also an HTTP daemon, a program that

is designed to wait for HTTP requests and handle them. The

client needs to type the correct Uniform Resource Locator

(URL) address in the browser program or clicking on a

hypertext link to get a web page or file, e.g.,

http://www.example.com/index.html. Then the browser

converts the URL into a request message and sends it to the

HTTP server. The HTTP daemon server receives and

interprets the request message, and returns equested file or

files associated with the request. This process is illustrated in

figure 2 below:

Fig. 2 The process of communication between client and web server

As mentioned above, when client enters a URL in the

address box of the browser, the browser translates the URL

into an HTTP request message and sends it to the server.

For example, the browser translated the URL

http://www.example.com/index.html into a request message,

as shown figure 3 below:

Fig. 3 An HTTP GET request message from a translation of a URL

When this request message is received and interpreted by

the server, the server will perform one of three actions:

• The server looks for the file under the server document

directory and returns the requested file.

• The server runs the requested program and returns the

program output to the client.

• The server returns an error message, because the

request can not be fulfilled.

An example of the HTTP response message is as shown

figure 4 below:

Fig. 4 An HTTP response message

The browser program accepts, interprets and displays the

contents of the response message in the browser window

according to the Content Type. The example above, Content-

Type is text/html. There are many content types, such as

"text/text", "text/html", "audio/mpeg", "video/mpeg",

"image/gif", "image/png", “image/jpeg", “application/pdf ",

and others. Figure 5 illustrates a response message will

appear in the browser window.

Fig. 5 An HTTP response message appears in browser

B. Denial of Service

 Denial of service attacks are a security threat where an

attacker sends a large number of fake requests to a host or

server, so the target host deny access from authorized users.

Service from host becomes unavailable. Therefore, the

attack compromises the system's availability. Denial of

service attacks (DoS) which aims at legitimate users,

clients,customers from successfully accessing the internet

has posing a serious challenge to the network security [26].

If a denial of service attack is launched from multiple

computers, it is often called a Distributed Denial of Service

129

(DDoS) attack. The most commonly used DoS attack now is

the DDoS attack where a large number of computers send

thousands of requests to the system being attacked [28].

DDoS attacks occur when multiple hosts are infected with

malware that allows hosts to be taken over by attackers; then

the attacker program instructs them to access the target

website. Usually, the host that is the target of the DoS attack

is the web base system or web server. Generally, a web

server programs, such as Apache, IIS have the ability to

handle or receive many connections from users. Attackers

benefit from the fact.

Due to the wide variety of attacks, it is helpful to classify

them in order to clarify the process of defending against

DoS. Attacks can take advantage of bugs or software

weaknesses of routers and other network devices. In

addition, vulnerabilities in the way operating systems

implement protocols as well as in applications running on

the victim machines may be exploited [5]. The classification

of DoS attacks is shown in Figure 6.

Fig. 6 The classification of Denial of Service Attacks

C. Slow HTTP Attack

Slow HTTP Denial of Service (DoS) is an application

layer DoS attack in which a large number of incomplete

HTTP requests are sent [8]. It is a layer 7 DoS. Application

DoS attacks is a new class of DoS attacks which exploits the

flaws in either application design or its implementation [6].

These attacks are harder to trace than Classical Dos attacks

because

• These attacks do not consume a huge amount of

bandwidth.

• These target on creating bottlenecks and resource

limitation within the application by focusing on the

weakest link in the application.

• These attacks normally use https as their transport

to hide their true origin.

Slow HTTP attacks are primarily of three types [3] as

follows :

1) Slow Headers (a.k.a Slowloris): In the Slow Header

attack, an attacker launches the action with the help of a tool

called Slowloris or similar. This tool opens connections,

then sending HTTP headers, augmenting but never

completing the request. Thousands of HTTP POST

connections are created and sends HTTP Headers very

slowly to force the target web server to keep the connections

open. This connection will remain alive, not disconnected

from the target server. Slowloris will take all the resources

from the target web server just for it, thus blocking requests

from legitimate clients.

2) Slow Body (a.k.a R-U-Dead-Yet): Slow Body attack

works just like Slow Header. An attacker with the help of a

tool called R-U-Dead-Yet or similar sends a POST Body

that will not end. The attack stage begins by making an

initial TCP connection to the target web server. It then sends

the HTTP POST header first as the normal connection does.

A header contains the size information of the body of the

data packet to be sent next. Attacker sends the message body

with a very low speed. But the connection remains alive,

making the victim’s web server wait long enough. New and

similar connections are created in large quantities, using all

server resources and making legitimate connections

impossible.

3) Slow Read: In a Slow Read Attack, attackers send

valid TCP-SYN packets to opening a connection with the

target’s server. Then valid sessions established between

them. Next, it begins to request a document from the target’s

server. Once the download begins the attacker’s host begins

to slow down the reading of received packets. This condition

will continue and take all resources of the target’s server.

Slow Read Attacks are always non-spoofed in order to hold

sessions open for long periods of time.

D. How Slow HTTP Attack Work

As described in the above section, attacks are performed

with the help of a program script, which is able to transmit a

partial request of the packet data , keeping multiple

connections to the victim's web server open. Periodically, it

sends the next HTTP header, but deliberately never

complete. It triggers the victim’s webserver to provide all of

its resources for the attacker, which ultimately deny

connections from legitimate users. An attacker doesn't need

a huge bandwidth to take down the victim’s webserver, but

only create a large number of connections [2]. Figure 7

illustrates the attacks.

Fig. 7 Illustration of Slow HTTP Attack

A ‘request’ message from a client to a server includes,

within the first line of that message, the method to be applied

to the resource, the identifier of the resource, and the

protocol version in use[11]. HTTP protocol defines a set of

request methods. The methods are HEAD, GET, POST,

PUT, DELETE, TRACE, CONNECT and OPTION.

We can perform an analysis of an HTTP GET request

from the client to the web server. This analysis will assist in

further explanation of HTTP GET requests. A tool, such as

Firebug, Live HTTP Headers is needed to aid the

130

analysis[10]. An extract of complete the HTTP GET request

as shown figure 8 below:

Fig. 8 Complete header of HTTP request

The example above is a normal GET Header. Each line

of messages ends in a character CRLF. CRLF stands for

CR (Carriage Return) and LF (Line Feed). The CRLF is a

non-printable character. The request message ends with a

blank line. There are two CRLF characters in the bottom

row. They together are used to denote a blank line. The

[CRLF] at the end of the request message attracts the

attention of the attacker.

In the Slow HTTP attack, a blank line will never exist.

The attacker deliberately did not send a CRLF character, at

the end of the request. A request message as following this

will result in Slow HTTP attack, because of the presence of

single CRLF tag at the end denoting the header is

incomplete, and server needs to wait for the complete

header. The incomplete header samples are shown in figure

9 below:

Fig. 9 Incomplete header of HTTP request by Slow HTTP Attack

E. Identify Slow HTTP Attacks

The effect of Slow HTTP attacks is that all clients can not

connect to the web server. The site won't load and our clients

will never get to see the content of web page. If our web

server are under attack, we will see many connections on

port 80 from source IP. The netstat command can show list

connections as follows :

$ netstat -nalt | grep :80

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN

tcp 0 0 24.34.0.1:4840 22.50.19.04:80 ESTABLISHED

tcp 0 0 24.34.0.1:4841 22.50.19.04:80 ESTABLISHED

tcp 0 0 24.34.0.1:4839 22.50.19.04:80 CLOSE_WAIT

tcp 0 0 24.34.0.1:4838 22.50.19.04:80 CLOSE_WAIT

tcp 0 0 24.34.0.1:4808 22.50.19.04:80 ESTABLISHED

tcp 0 0 24.34.0.1:4898 22.50.19.04:80 CLOSE_WAIT

tcp 0 0 24.34.0.1:4890 22.50.19.04:80 ESTABLISHED

On the server log will show the number of connections.

Example, on Apache server, status looks like the following :

$ apachectl status

...

 CPU Usage: u3.1 s.2 cu0 cs0 - 1.0% CPU load

 .913 requests/sec - 31.1 kB/second - 17.5 kB/request
 611 requests currently being processed, 2 idle workers

….

The information above shows very low CPU usage, a lot

of Apache processes, very few new requests. Attacker works

by making many requests and more until it reaches Apache's

MaxClients limit. If we look Apache’s log, it will like this:

 $ cat /var/log/httpd/error.log

 [mpm_prefork:error] [pid 1842] AH00161: server reached
MaxRequestWorkers setting, consider raising the
MaxRequestWorkers setting

For identify the IP address of attacker’s machine, we can

use netstat, a tool for view the most active IPs on server.

Examples of using netstat as follows:

 $ netstat -ntu -4 -6 | awk '/^tcp/{ print $5 }' | sed -r 's/:[0-9]+$//'
| sort | uniq -c | sort -n

This command will filter all the IPs that are connected to

the server, order them and then count each unique

occurrence. The output like this :

 78 201.123.9.9

 64 129.10.20.11

 185 192.143.24.24

 ……

then after we know the attacker’s IPs, blocking can be

done on the IP address. On linux IPTABLE program is

available. The following commands can be used:

 $ iptables -A INPUT -i eth0 -s 201.12.9.9 -j DROP

the meaning of the command line above, if there is an

incoming connection through interface eth0, from source’s

IP 201.12.9.9., then disconnect (DROP).

Early detection can be implemented by testing the web

weakness or test web vulnerability. Many application for

web vulnerability scanner is available on the world, such as

Acunetix, OWASP and etc.

F. Related Work

Risk of computer security threats by Slow HTTP attacks

has triggered the network security experts to develop the

defense techniques. Many different methods & techniques of

defense are available for webserver. These methods vary

depending on the protected object and the set of rules in

operation. Researchers from academics have also done a lot

of research to detect & deal with Slow HTTP attacks. A

131

large amount of literature is available in these attacks. Here,

we summarize models or methods that focus on dealing

Slow HTTP attacks.

Reference [8] proposed detection system is an anomaly

detection system which measures the Hellinger Distance

between two probability distributions generated in training

and testing phases. Testing of proposed detection system by

collecting simulated HTTP traffic on LAN and the Internet.

Results show that proposed system detects Slow Header and

Slow Message Body attacks with high accuracy.

Reference [12] analyze Slow Read DoS attack. Results

that the efficient attack can be realized when the bandwidth

is over 500 Kbps. Also, the researcher found the secure

setting of web server against Slow Read DoS attack.

Reference [13] study slow DoS attacks, analysing in detail

the current threats and presenting a proper definition and

categorisation for such attacks. The research aimed to

provide a useful framework for the study of this field, and

for the proposal of innovative intrusion detection

methodologies.

Reference [14] analyzed the effectiveness of Slow Read

DoS Attack by virtual network environment. The research

concluded that attacking by a single attacker is not so

efficient. A secure module for a web server, ModSecurity

can limit the length of attack success status.

Reference [15] propose and evaluate a defense method

against Distributed Slow HTTP DoS attack by disconnecting

the attack connections selectively by focusing on the number

of connections for each IP address and the duration time.

Reference [16] designed an attack tool, named

SlowDroid. A tool runs on an Android mobile device. The

research compares attacks with similar tools that already

exist. The results that the tool designed is a serious threat.

Reference [17] analysing web-server behaviour when

various types of Slow HTTP-attack occurs using

mathematical models. Analyse aimed at building the model

for the systems for the types of Slow HTTP attacks

detection.

III. RESULTS AND DISCUSSION

A. Defense against Slow HTTP Attacks

Defense against HTTP attacks is made with a particular

configuration, so that attacks can be prevented or reduced.

Prevention can be done in general and specific

configuration. The general configuration can be applied to

machines running any web server application (Apache,

Nginx, and others). While the specific configuration is

applied to a particular web server. For example, the

configuration for preventing Slow HTTP attacks on Apache

will be different from Nginx.

The general configuration aimed to prevent Denial of

Service (DoS) attacks against a network service. In Linux,

we use the xinetd daemon. The xinetd daemon can add a

basic level of protection from Denial of Service (DoS)

attacks. We must configure file /etc/xinetd.conf or create a

new file in the /etc/xinetd.d directory and add some

command line. The following is a sample config file for

service called http located at /etc/xinetd.d/ http.

 $ nano /etc/xinetd.conf

 or

 $ nano /etc/xinetd.d/http

Then append following text at the end of the file :

 service http

 {
 protocol = tcp

 server = /usr/sbin/apache2

 cps = 15 20
 instances = 5
 per_source = 2
 max_load = 3.0
 }

Where,

service: Specifies the service name. In this case, the

service to be protected is http.

protocol: Sets the protocol type to TCP.

server : the running server program.

cps = 15 20 : Limit to 15 connections per second. If the

limit is exceeded, sleep for 20 seconds.

Instances = 4 : Limit to 4 concurrent instances of

myservice.

per_source = 2 : Limit to 2 simultaneous sessions per

source IP address. The default is UNLIMITED .

After setting the configuration, the xinetd service needs to

be restarted. To restart xinetd service, type the command:

 $ /etc/init.d/xinetd restart

B. Defense on Nginx Web Server

Nginx has provided some configuration parameters to

prevent and mitigate Slow HTTP attacks. This configuration

is stored in the nginx.conf file. Nginx has features to

prevent and mitigate such attacks, by :

• controlling buffer overflow attacks.

• controlling timeouts.

• controlling simultaneous connections.

For controlling buffer overflow attacks, edit the

nginx.conf file, usually in /usr/local/nginx/conf/ directory.

 # cd /usr/local/nginx/conf
 # nano nginx.conf

and append following text to set the buffer size limitations

for all clients as follows:

 client_body_buffer_size 1K

 client_header_buffer_size 1k

 client_max_body_size 1k

 large_client_header_buffers 2 1k

Where,

client_body_buffer_size 1k : sets the client request body

buffer size.

client_header_buffer_size 1k : sets the header buffer

size for the request header from client.

132

client_max_body_size 1k : sets the maximum accepted

body size of the client request.

large_client_header_buffers 2 1k sets the maximum

number and size of buffers for large headers to read from

client request. 2 x 1 k will accept 2 kiloByte data URI.

We also need to control timeouts to improve server

performance. Lower the timed out wait time for each http

connection. Append the following text into nginx.conf file :

 client_body_timeout 12

 client_header_timeout 12;
 keepalive_timeout 15;
 send_timeout 10;

where,

client_body_timeout : to close the connections with slow

body

client_header_timeout : to close the connections with

slow headers

send_timeout : If the client does not receive anything

within this time, the connection is closed.

For controlling simultaneous connections, Nginx provide

HttpLimitZone module. Edit nginx.conf and append

following command line :

 limit_zone slimits $binary_remote_addr 5m;
 limit_conn slimits 5;

Where,

limit_zone slimits $binary_remote_addr 5m; limit the

number of simultaneous connections for the assigned session

from single IP address.

limit_conn slimits 5 : limits remote clients to no more

than 5 concurrently “open” connections per single ip

address.

All configuration above can provide protection,

prevention and mitigate Nginx web server from Slow HTTP

attacks.

C. Defense on Apache Web Server

Many methods or techniques can be applied to prevent

and mitigate Slow HTTP attacks on Apache server. We can

take advantage of the built-in features of the operating

system and Apache itself. In Apache Web Server version

2.2.15 or above, some modules are available, such as

mod_reqtimeout, mod_qos, mod_security, and

mod_antiloris.

1) Using mod_reqtimeout: The mod_reqtimeout module

allows we to set a time limit for receiving HTTP request

headers and body from clients. Therefore, if header or body

data is not received by the Apache server within a specified

time, the 408 REQUEST TIME OUT error message is sent

by the server[4]. An example of an Apache configuration

with enabled mod_reqtimeout module as follow:

<IfModule mod_reqtimeout.c>

 RequestReadTimeout header=15-20,MinRate=512
body=15,MinRate=512

</IfModule>

Put the above command line inside /etc/apache2/httpd.conf

and restart Apache. The above Apache configuration will

allows a client send for the first byte of the request

line+headers in 15 seconds and maximum 20 seconds for the

headers to complete. Allows a client sends header data at a

rate of 512 bytes per second. Then Apache server will allow

the client to send body data for up to 15 seconds and up to

20 seconds for the body of the request to complete. Result:

stopped the attacker after 15 seconds , but allowed to

attacker to retry after x time.

2) Using mod_qos: The next module is mod_qos. The

mod_qos is a quality of service (QoS) module for the

Apache HTTP Server. It is used to reject requests to

unimportant resources while granting access to more

important applications. It provide control mechanisms base

on levels of priority to different HTTP requests. An example

of configuration mod_qos to prevent Slow HTTP attacks as

follows :

 <IfModule mod_qos.c>
 QS_ClientEntries 500
 QS_SrvMaxConnPerIP 10

 MaxClients 200

 QS_SrvMaxConnClose 70%
 QS_SrvMinDataRate 150 1200

 </IfModule>

Put the above command line inside httpd.conf and restart

apache. The above configuration allows the server to track

up to 500 connections and allow the server to receive up to

200 connections only. In addition, each IP address is allowed

to make simultaneous connections up to a maximum of 10

connections. HTTP KeepAlive will switch off when 70% of

connections are used. The configuration requires a minimum

of 150 bps per connection, and 1200 bps when MaxClients is

reached. Result : stopped the atack after 1 second and stopt

the attacker from using the same IP.

3) Using mod_security: The mod_security module is a

free Web Application Firewall (WAF) that works with

Apache, Nginx, and IIS. This module is used to protect a

website from various attacks such as XSS, LFI, SQL-

injection, Password attack Trojans, session hijacking and

much more. This module can be applied to carry out specific

functions. The configuration is done by editing the file

/etc/modsecurity/modsecurity.conf. This file is a copy of the

original file /etc/modsecurity/modsecurity.conf-

recommended. When installing mod_qos, the config file is

created automatically. Step configuration to mitigate a Slow

HTTP attack as follows: Edit the modsecurity.conf file.

 # nano /etc/modsecurity/modsecurity.conf

Then find this line:

 SecRuleEngine DetectionOnly

and change it to:

 SecRuleEngine on

133

The mod_security module requires rules to work. It have

security rules, called Core Rule Set (CRS), located at

/usr/share/modsecurity-crs directory. We will create a rule

chain which blocks the request of attacker. Custom rules can

be created in a separate new file and placed in modsecurity

directories.

 # nano modsecurity_SlowHTTP_rules.conf

and put the following rule line inside the *.conf file:

SecAction
phase:1,id:122,nolog,pass,initcol:ip=%{REMOTE_ADDR}

SecRule RESPONSE_STATUS "@streq 408"
"phase:5,t:none,nolog,pass, setvar:ip.slow_dos_counter=+1,
expirevar:ip.slow_dos_counter=60, id:'123'"

SecRule IP:SLOW_DOS_COUNTER "@gt 6"
"phase:1,t:none,log,drop,msg:'Client connection dropped due to
suspected as an slow http attack', id:'124'"

The above rule record how many times the IP address has

triggered a 408 error code. If this event has happened more

than 6 times in 60 seconds, the next request for that IP

address will be dropped by mod_security. Clients can still

connect again after 6 minutes.

4) mod_antiloris apache module: Another solution, use

an apache module called as mod_antiloris. This module will

protect Apache 2.x from the slowloris attack. The module

limits the number of simultaneous connections per IP

address that are in READ state. The following command line

to enable mod_antiloris :

 # apxs -a -i -c mod_antiloris.c

then restart Apache:

 # service httpd restart

finally, check whether mod_antiloris loaded or not:

 # httpd -M | grep antiloris

output like this:

 antiloris_module (shared)

Finally, mod_antiloris have protect Apache web server from

Slowloris attacks.

D. Defense on IIS Web Server

Just like Apache and Nginx, IIS also has some features

and modules that can be adjusted to reduce this attack. The

configuration settings are stored in the web.config file.

Microsoft IIS has provided Internet Information Services

(IIS) Manager, a GUI for easy IIS server management and

settings.

1) WebLimits: The <webLimits> element can help

preventing Slow HTTP attacks on IIS Server. WebLimits

has some attributes, such as: connectionTimeout,

dynamicIdleThreshold, headerWaitTimeout and

minBytesPerSecond. The connectionTimeout attribute is

used to sets the waiting time for IIS, before disconnecting a

client considered inactive. The dynamicIdleThreshold

attribute is used to sets the percentage of committed physical

RAM. The headerWaitTimeout attribute is used to sets the

time that IIS waits for all HTTP headers request before

disconnecting a client connection. The minBytesPerSecond

attribute is used to specifies the minimum throughput rate,

when server sends a response to the client. If the throughput

rate is lower than the minimum byte setting, the connection

is terminated. Below are an configuration which using

webLimit:

 <configuration>

 <system.applicationHost>

 <webLimits connectionTimeout="00:00:45"
 headerWaitTimeout="00:00:35"
 dynamicIdleThreshold="150"
 minBytesPerSecond="512"
 />

 </system.applicationHost>

 </configuration>

The above configuration specifies that the connection time-

out to 45 second, the header wait time out to 35 seconds, the

percentage of committed RAM to 150. Finally, IIS allows

the minimum throughput rate to 512 bytes per second.

2) Request Limits: The <requestLimits> element sets

limits on HTTP requests that are processed by the IIS. These

limits such as: the maximum length of the URL, the

maximum length of the query string, the maximum length of

content in request and size limits for HTML headers. These

limits are specified in attributes of <requestLimits>, such as

maxAllowedContentLength, maxQueryString, and

maxUrlLength. The following is an code sample of the

<requestLimits> element.

 <configuration>

 <system.web>

 <httpRuntime maxUrlLength="2048"
 maxQueryStringLength="1024" />

 </system.web>

 </configuration>

The above code will configure IIS to deny access for HTTP

requests where the length of the URL is greater than 2048

bytes (2KB) and the length of the query string is greater

than 1024 bytes. While, the below codes will configure IIS

to drop for HTTP requests where the length of the "Content-

type" header is greater than 100 bytes.

 <configuration>

 <system.webServer>

 <security>

 <requestFiltering>

 <requestLimits>

 <headerLimits>

 <add header="Content-type" sizeLimit="100" />

 </headerLimits>

 </requestLimits>

 </requestFiltering>

134

 </security>

 </system.webServer>

</configuration>

The combination of these two codes can reduce Slow

HTTP attacks to IIS Server.

IV. CONCLUSIONS

The Slow HTTP attacks can be just as cruel as other

DDoS attacks, if not handled properly. Each web server has

its own properties and requires special handling. There are

many configuration options for each web server. We do not

need to use all of these options to apply to the server. Just

one or two choices. But it must be considered in the

selection of methods / techniques, so that the configuration is

not overlapping or opposite, so even ineffective.

Finally, We know that Slow HTTP attacks can be

prevented and even eliminated, if the web server is installed

the right security system. We can also see that this paper has

thoroughly discussed how to handle this attacks on some

famous web servers.

ACKNOWLEDGMENT

 The author would like to thank Faculty of Technology,

Batam University for permits to use Laboratory of Computer

and Internet connection when write this paper.

REFERENCES

[1] A. Nicolic. (2013) The nmap website. [Online]. Available:

https://nmap.org/nsedoc/scripts/http-slowloris-check.html

[2] T. Mansoor. (2012). The admin-ahead website. [Online]. Available:
https://admin-ahead.com/blog/analyzing-the-anatomy-of-a-dos-

attack-using-slowloris/

[3] S. Kumar. (2012). The Geeks website. [Online]. Available:

http://www.geeksforgeeks.org/slow-http-can-knock-server/

[4] I. Muscat. (2013). The Acuanetix website. [Online]. Available:

http://www.acunetix.com/blog/articles/slow-http-dos-attacks-

mitigate-apache-http-server/
[5] S. Ramanauskaite, A.Cenys "Taxonomy of DoS attacks and their

countermeasures " Central European Journal of Computer Science.

Vol 1, Issue 3, pp. 355-366, Sept. 2011
[6] D Sai Krishna et al,”Application Denial of Service Attacks Detection

using Group Testing Based Approach“. International Journal of

Computer Science & Communication Networks,Vol 2(2), pp. 167-
171, Feb. 2012

[7] I. Sommerville, Software Engineering, 10nd ed. Essex – England:

Pearson, 2015
[8] N. Tripathi, et al. “How Secure are Web Servers? An Empirical

Study of Slow HTTP DoS Attacks and Detection”, in Reliability and

Security (ARES), 2016, pp. 454–463
[9] I. Muscat. (2017) The Acuanetix homepage. [Online]. Available:

https://www.acunetix.com/blog/docs/http-sniffer/

[10] B. Gussel. (2009) The tutsplus homeepage. [Online]. Available:
https://code.tutsplus.com/tutorials/http-headers-for-dummies--net-

8039

[11] (2017) The W3 website. [Online]. Available:
https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html

[12] Tayama S., Tanaka H, “Analysis of Slow Read DoS Attack and

Communication Environment”, in International Conference on
Mobile and Wireless Technology, ICMWT, 2017, p. 350-359.

[13] E. Cambiaso, G. Papaleo, G. Chiola, et al, "Slow DoS attacks:

definition and categorisation", International Journal of Trust
Management in Computing and Communications (IJTMCC), Vol. 1,

pp. 300-319, Sept 2013.

[14] J. Park, K. Iwai, H. Tanaka and T. Kurokawa, "Analysis of Slow
Read DoS Attack and Countermeasures on Web servers",

International Journal of Cyber-Security and Digital Forensics

(IJCSDF) Vol. 4(2): pp. 339-353, Sept 2015.
[15] T. Hirakawa, K. Ogura, B. Bahadur and T. Takata, "A Defense

Method against Distributed Slow HTTP DoS Attack", in NBiS,

2016, p. 152-158.
[16] E. Cambiaso, G. Papaleo, G. Chiola and M. Aiello, "Mobile

executions of Slow DoS Attacks", Logic Journal of the IGPL, Vol.
24, Issue 1, pp. 54–67, Feb 2016.

[17] I. Duravkin, A. Loktionova and A. Carlsson, "Method of slow-attack

detection", in Problems of Infocommunications Science and
Technology, 2014, p. 102-106.

http://www.acunetix.com/blog/articles/slow-http-dos-attacks-mitigate-apache-http-server/
http://www.acunetix.com/blog/articles/slow-http-dos-attacks-mitigate-apache-http-server/

