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Abstract— Clustering is a process of grouping a set of objects into multiple clusters, so that the collection of similar objects will be 

grouped into the same cluster and dissimilar objects will be grouped into other clusters. Fuzzy k-means Algorithm is one of clustering 

algorithm by partitioning data into k clusters employing Euclidean distance as a distance function. This research discusses clustering 

categorical data using Fuzzy k-Means Kullback-Leibler Divergence. In the determination of the distance between data and center of 

cluster uses mutual information known as Kullback-Leibler Divergence distance between the joint distribution and the product 

distribution from two marginal distributions. Extensive theoretical analysis was performed to show the effectiveness of the proposed 

method. Moreover, the proposed method's comparison results with Fuzzy Centroid and Fuzzy k-Partition approaches in terms of 

response time and clustering accuracy were also performed employing several datasets from UCI Machine Learning. The experiment 

results show that the proposed Algorithm provides good results both from clustering quality and accuracy for clustering categorical 

data as compared to Fuzzy Centroid and Fuzzy k-Partition.  
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I. INTRODUCTION 

Clustering is a method used in data mining to group objects 

into several groups or clusters based on information obtained 

from data that explains the relationships between objects. This 

clustering aims to make the objects between clusters have a 

minimum similarity and the objects in one cluster have a 

maximum level of similarity. Clustering in data mining is 

useful for finding distribution patterns within a data set that is 
used for the data analysis process. The similarity of objects is 

usually derived from the proximity of attribute values that 

describe objects. In a multidimensional space, objects are 

usually represented as a point. Clustering is a data 

segmentation method that has been implemented in various 

fields such as prediction and business problem analysis of 

market segmentation, marketing, zoning area to the 

identification of objects and patterns recognition in the field 

of computer vision and image processing. 

Currently, many algorithms have been developed to cluster 

the data [2]–[5]. The k-Means Algorithm is one of the most 

popular among clustering algorithms, and it is still developed 
today. Researchers still develop this clustering algorithm for 

grouping large data sets based on their effectiveness and 

efficiency [6]. One of the k-means clustering algorithm 

extensions is Fuzzy k-Means clustering proposed by Bezdek 

[7]. Each object or point in fuzzy clustering has a probability 

of belonging to each cluster. Unlike in traditional k-means, 

the probability of each object belongs to only one cluster. The 

problems where the points are between centers or otherwise 

ambiguous handled by the fuzzy k-means are done by 

replacing the distance with probability. In this case, 

probability can be a function of distance, such as relative 
probability to the distance inverse. 

Although Fuzzy k-means is considered a clustering 

algorithm with high effectiveness and efficiency, this 

Algorithm can only be performed on numerical data using 

distance in determining the center of cluster with each point. 

Therefore, the distance function should be chosen to 

determine the center of cluster for categorical data. One of the 

distance functions used for categorical data is Kullback-

Leibler (KL) Divergence [8]. 

11

JOIV : Int. J. Inform. Visualization, 5(1) - March 2021 11-15



This article suggests a modified Fuzzy k-Means for 

categorical data clustering based on KL Divergence distance. 

The distance between the cluster's data and center is 

determined by using Mutual Information [9], which is KL 

Divergence distance between the product distribution and the 

joint distribution from two marginal distributions. 

This paper was arranged in the following order. Section II 

describes Fuzzy  k-Means, Entropy, and  KL Divergence. 

Section III explains the proposed method based on KL 

Divergence to fuzzy k-Means Algorithm. Section IV 

illustrates the results of the experiment on real world datasets 
from UCI Machine Learning. Finally, this work is concluded 

in section V. 

II. LITERATURE REVIEW 

A. Fuzzy k-Means 

The k-Means Algorithm is well known as an efficient 

algorithm for grouping large data sets [11]. According to 

Bezdek [7], each pattern in the fuzzy version of the k-Means 

Algorithm is allowed to have a membership function for all 
clusters rather than having different memberships on one 

cluster. 

Fuzzy k-Means clustering algorithms group X into k 

clusters as in the Algorithm [6]. The Algorithm is used to 

minimize the objective function 

���, �� = � � 	
����� , �
��
���

�

��  (1) 

by the constrains ∑ 	
��
��  for � = 1, … , � with 	�� ∈ [0,1] (2) 

The first step, we formed the Lagrange function � from Eq. 
(1) and (2). Next, we determine the first derivative of the 

function �  concerning the parameters 	
� , �
 , �  and equated 

with 0. So that, we get the following result: 

	
� = � 1��� , �
� ��!�

∑ � 1��� , �
� ��!��
��
 (3) 

�
 = ∑ 	
��������∑ 	
������  (4) 

Thus, we have Fuzzy k-Means Algorithm as follows. 

 

Fuzzy k-Means Algorithm. 

Step 1 : Fix " ∈ �1, ∞�, fix 2 ≤ & ≤ �, fix MaxIter and fix ' > 0. 
Take initials 	
��*�

 and suppose + = 1. 

Step 2 : Calculate �
�,�
 with 	
��,!��

 in equation (3) 

Step 3 : Update to 	
��,�
 with �
�,�

 in equation (4) 

Step 4 : Compute objective function ���, ���,� by (1) 
Step 5 : Check the stop condition  

IF -	
��,� − 	
��,!��- < ', -���, ���,� − ���, ���,!��- < ' or + > 0123+45, THEN Stop. 

ELSE + = + + 1 and return to step 2. 

B. Entropy 

A single definition is unable to capture an overly broad 

concept of information fully. However, we can define a 

quantity from any probability distribution by entropy. Many 

properties correspond to the intuitive notion of what a size of 

information derived from entropy. The idea is extended to 
define reciprocal information, which is a size of the amount 

of information on one random variable containing another 

information. Then, entropy becomes self-information from 

the random variable. Mutual Information is a special case of 

the more general quantity referred to here as relative entropy. 

Relative entropy can also be a measure of the distance 

between two probability distributions [9]. 

 

Definition 2.1. Let X be a discrete random variable. Entropy 

H (X) is defined by  

7��� = − � 8�2�log8�2�9∈:  (5) 

Definition 2.2. Pairs of discrete random variables ��, ;� with 

the joint distribution 8�2, =� form the entropy 7 �2, =� which 

is defined as 

7��, ;� = − � � 8�2, =�log8�2, =�>∈?9∈:  (6) 

Relative entropy or Kullback-Leibler Divergence between 

two probability distributions 8�2� and @�2� is defined as 

A�8||@� = � 8�2�log
8�2�@�2�9∈:  (7) 

The KL Divergence is a measure of the "distance" between 

two probability distributions. Since the KL Divergence is 

asymmetrical and does not follow the triangle's inequality, it 

is not metric [4]. 

Suppose that {8�, 8D, … , 8�}  are sets of discrete 

probability distributions and {F�, FD, . . . , F�}  are weights 
corresponding. Then Jensen-Shannon (JS) Divergence 

between 8� and 8D is written by GHI� 8� , 8D� = F�A�8�||F�8� + FD8D� + FDA�8D||F�8� + FD8D�= 7�F�8� + FD8D� − F�7�8�� − F�7�8��               

with F� + FD = 1, F� ≥ 0. It is clear that a measure of the 

Jensen-Shannon (JS) Divergence is a symmetrical measure in {F�, 8�}  and {F�, 8�}  [18]. The distance between a finite 

number of probability distributions can be measured using the 

generalization of the JS divergences written in the formula: 

GHI�{8�: 1 ≤ � ≤ �}� = 7 L� F�8�
�

���
M − � F�7�8���

���
 (8) 

which is symmetric in the {F� , 8�}  and ∑ F� = 1, F� ≥ 0� . 

Thus, based on entropy we can analyze the distance measure 

ofor categorical data by introducing an important lemma [8] 

as follows: 

Lemma 2.1. 

� F�A L8�|| � F�8�
�

���
M�

���
= 7 L� F�8�

�
���

M − � F�7�8���
���
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Definition 2.3. Consider two random variables � and ; with 

a joint probability mass function 8�2, =�  and marginal 

probability mass function 8�2�  and 8�=� . The Mutual 

Information 3��, ;� is the relative entropy between the joint 

distribution and the product distribution 8�2�8�=� [9]: 

3��, ;� =  � � 8�2, =�log
8�2, =�8�2�8�=�>∈?9∈: = A�8�2, =�||8�2�8�=�� 

(9) 

C. Kullback-Leibler Divergence 

In mathematics, a distance is summarized and abstracted 

into a metric concept. Kullback-Leibler (KL) Divergence 

distance is defined for Eq. (7). In most cases, it is easy to see 

that A�8||@� ≠ A�@||8� and A�8||@� + A�@||5� ≥ A�8||5�, 

so  A  is not a metric. Thus, we use definition of mutual 

information to be presented in the proposition 2.1. 

 

Proposition 2.1. Given data set O , then O is partitioned into &  clusters. Suppose that random variables �, ;  and � 

represent the object, the attribute and the cluster, respectively. 

Suppose that the probability of occurrence of the object 2, 

atrribute =, and cluster � are expressed  8�2�, 8�=� and 8���, 

respectively. In addition, ��2, =�  represents the number of 

occurences of attribute = in object �2� and ��2� = Σ>��2, =�. 

Furthermore, we assume that 8��� = Σ9∈Q8�2�. Let 3��, ;� 

be the mutual information between two random variables � 

and ;, then 

3��, ;� − 3�� − ;� = � � 8�2�A�8�;|2�||8��|����9∈QR�  

where 8�2� = ��9�∑ ��9�S  dan T�;|2� = ��9,>���9� . 

We know, A�8�;|2�|-8��|���U = ∑ 8�=|2� log YZ=-2UYZ�-�� U>  

We restate ∑ 8�=|2� log YZ=-2UYZ�-��U>  with A>  to simplify the 

notation. Furtherrmore, there are four scenarios generated by 

different combinations of 8�=|2�  and 8�=|���  values, 

namely [8] : 

 Scenario 1 : 8�=|2� > 0 and 8�=|���. The calculation 

for A> is very easy to do. The calculation result is in 

any real number. 

 Scenario 2 : 8�=|2� = 0  and 8�=|��  � = 0 . We can 

simply leave A> =  0 or its equivalent removing this 

feature.. 

 Scenario 3 : : 8�=|2� = 0 and 8�=|��  � > 0 . In this 

scenario, " log YZ=-2UYZ�-�� U = log 0 = −∞ , which implies 

that there is an inadequacy in direct computing, but this 

problem can be solve by applying the L’Hospitals rule, log9→*\ log 9] = 0�1 > 0�. So we can consider 2 =8�=|2� and 1 = 8�=|���  and thus we get A> = 0. 

 Scenario 4 : 8�=|2� > 0  and 8�=|��  � = 0 . In this 

scenario, A> = +∞ , which in practise is difficult to 

handle. 
According to Junjie Wu [8], However, the case in scenario 

4 is the most difficult case to handle as it is difficult to 

compute with +∞ in practice. On the other hand, it is clear 

that the total KL Divergence of 8�;|2�  and 8�;|���  is 

infinite if there is some dimension y of scenario 4. This does 

not work for sparse data because the centroids of such data 

typically contain many zero-value features. Therefore, 

assgning instance to centroid is a big challenge for us. This is 

known as the “zero-value dilemma” [8]. 

The above problems can be overcome by smoothing sparse 

data. For example, the entire data set is added with a very 

small positive value to avoid the zero value of feature [8].  

This technique does change the data's scatter property, 

although this smoothing technique facilitates the calculation 

of the KL Divergence[8]. 

III. PROPOSED METHOD 

The Fuzzy k-Means model has been discussed in section II. 

From the development of Fuzzy k-Means in equations (8) and 

(9), complex calculations are obtained. Therefore, we propose 

another model, called Fuzzy k-Means KL Divergence. 

Let ℚ  be a data set. A partition of ℚ  into &  clusters. 

Suppose that random variables �,; and � represent the object, 

the attribute and the cluster, respectively.  Suppose that the 

probability of occurrence of the object 2 , atrribute = , and 

cluster �  are expressed  8�2�, 8�=�  and 8���. Furthermore, 

we assume that 8��� = ∑ 8�2�9∈Q . In addition ��2, =� 

represents the number of occurrences of attribute = in object 2, and ��2� = ∑ ��2, =�> .  

Now, objective function �_`a`b��, 8�;|���  can be 

written as follows: 

�_`a`bZ�, 8�;|��U = � � 	���8�2��A�8�;|2��||8�;|�����
���

`
���

 (10) 

By the constraint  ∑ 	���̀�� = 1,  for � = 1,2, ⋯ , � (11) 

� 8�;|��� = 1>  (12) 

The minimization of the objective function in Eq. (10) is 

based on Kullback-Leibler Divergence in proposition 2.1. In 

the case of minimizing �_`a`bZ�, 8�;|��U , there is a 

problem  with respect to 	�� and 8�;|��� under constrains of 

(11) and (12). This problem can be equalized to minimizing.  �_`a`b��, 8�;|��, ��, �D�
= � � 	���8�2��A�8�;|2��||8�;|�����

���
`

���
− �� L� 	�� − 1`

��� M − �D d� 8�;|��� − 1> e 

(13) 

by using the Lagrangian Multiplier concept. 

 

Based on the Lagrange function �_`a`b  , the first partial 

derivatives �_`a`b  with respect parameters 	�� , 8�;|���, �� 

and �D are determined and then set equal to 0. The parameters 	�� , 8�;|���, �� and �D are determined from the solution of 

the system of equations 
fbghihjfkRl = 0, fbghihjfY�?|QR� = 0, 

fbghihjfmn = 0, fbghihjfmo = 0 so that it is obtained 
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	�� = � 18�2��A�8�;|2��||8�;|���� ��!�

∑ � 18�2��A�8�;|2��||8�;|���� ��!��̀��
 (14) 

8�;|��� = ∑ 	���8�2��8�;|2������∑ 	���8�2������  (15) 

�D = − � 	���8�2���
���  (16) 

�� = "	����!��8�2��A�8�;|2��||8�;|���� (17) 

where 

8�2�� = ��2��/ � ��2��9  (18) 

8�2�� = ��2��/ � ��2��9  (19) 

Fuzzy k-Means KL Divergence Algorithm. 

Step 1 : Fix " ∈ �1, ∞�, fix 2 ≤ & ≤ �, fix MaxIter and fix 

any ' > 0. Take initials 	���*�
 and let + = 1. 

Step 2 : Transformation of data into (19) 

Step 3 : Compute 8�2�� by (18) 

Step 4 : Compute 8�;|����,� with 	���,!��
 by (15) 

Step 5 : Update to 	���,�
 with 8�;|����,� by (14) 

Step 6 : Compute objective function �_`a`b��, 8�;|�����,� 
by (10) 

Step 7 : Check the stop condition  

IF -	���,� − 	���,!��- < ' , -�_`a`b��, 8�;|�����,� −�_`a`b��, 8�;|�����,!��- < ' or + > 0123+45, THEN Stop. 

ELSE + = + + 1 and return to step 3. 

IV. EXPERIMENT RESULTS AND DISCUSSION 

In the experiment, the proposed Fuzzy k-Means KL 
Divergence was implemented in MATLAB. The clustering 

results were obtained later in the evaluation of both internal 

criteria and external criteria. We can compute external criteria 

that evaluate the clustering quality [12]. To calculate purity, 

three steps must be taken. In the first step, each cluster was 

assigned to the most frequent class in the cluster. This task's 

accuracy was measured by calculating the amount of data set 

correctly in the second step. The amount of data that had been 

calculated in the second stage was divided by the number of 

objects in the third step [12].  

 

Purity(Ω,ℂ) = 1r � maxs�
|t� ∩ vs | (20) 

where ℂ = wv�, vD, … , vxy  is the set of classes and  

Ω=wt� , tD, … , t`y is the set of clusters. The set of data in t� 

is represented by t�  and vs  as the set data in vs  (16). Other 

and the set data in vs  are represented by vs  (16). Random size 

is another external used to analyze clusters. The adjusted 

Rand index [5], [13] is corrected for chance version of the 

rand index that computes how similar the clusters (returned 

by the clustering algorithm) are. The adjusted rand index is as 

in (17) 

z = ∑ ∑ {�s�2 | − {�2|!��̀��
s�� ∑ {�s.2 |
s�� ∑ {�.�2 |�̀��12 }∑ {�s.2 | +
s�� ∑ {�.�2 |�̀�� ~ − {�2|!� ∑ {�s.2 |
s�� ∑ {�.�2 |�̀��
 (21) 

where �s�  represents the number of objects that are in 

predefined class � and cluster &, �s. indicates the number of 

objects in a priori class �, �.� indicates the number of objects 

cluster �, and � is the total number of objects in the data set. 

In internal criteria, a clustering result was measured by the 

clustering accuracy 5 [6] defined as 

5 = ∑ ]RhR�n�   (22) 

where 1�  represented the number of instances occurring in 

both cluster & and its corresponding class and � represented 

the number of instances in the data set. 

We have real datasets from UCI Machine Learning as 

follows [12]: 

 Zoo data set loads 101 instance and 18 categorical 

attributes with a total of 7 clusters. 
 Soybean small data set loads 47 instances and 35 

categorical attributes with a total of 4 clusters. 

 Balloon data set loads 20 instances and 4 categorical 

attributes with a total of 2 clusters. 

 Monk data set loads 432 instances and 7 categorical 

attributes with a total of 2 clusters. 

Fuzzy k-Means KL Divergence is run partially given one 

initial membership function 	�� . The matrix initial 

membership 	�� is a random matrix input for Fuzzy k-Means 

KL Divergence satisfying the constrains (7) and sum 
probability distributions for cluster center satisfying the 

constrains (8). From 10 times implementation of Fuzzy k-

Means KL Divergence for the Zoo, Soybean small, Balloon, 

and Monk datasets in varying fuzziness index " = 2 with 

100 number of iterations, and then the average accuracy, 

purity, and rand index are calculated. The results are 

presented as follows. 

TABLE I 

COMPARISON RESULT IN TERMS OF PURITY 

 KLD FC FkP Improvement (%) 

Zoo 0.9403 0.8932 0.8996 5.27 

Soybean 0.9167 0.9167 0.9167 0.00 

Balloon 0.7917 0.7825 0.8863 13.27 

Monk 0.6714 0.53 0.5901 26.68 

Average of Improvement 11.30 

TABLE II 

COMPARISON RESULT IN TERMS OF ACCURACY 

 KLD FC FkP Improvement (%) 

Zoo 0.9307 0.8616 0.8568 8.63 

Soybean 0.8936 0.9004 0.9066 0.00 

Balloon 0.8 0.7985 0.8905 0.00 

Monk 0.6713 0.4959 0.6216 35.37 

Average of Improvement 11.00 
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TABLE III 

COMPARISON RESULT IN TERMS OF RAND INDEX 

  KLD FC FkP 
Improvement 

(%) 

Zoo 0.9451 0.7875 0.7877 20.01 

Soybean 0.8982 0.7493 0.7493 19.87 

Balloon 0.6632 0.526 0.7134 0.00 

Monk 0.5577 0.5 0.5 11.54 

Average of Improvement 12.86 

 

Fig. 1  Validation measure for clustering categorical data 

 

From Table I-III, the overall results show that the KLD 

achieved an average accuracy of 83% with an average 

accuracy increase of 11.30%. Likewise, for an average of 

purity achieved 82.39% with an average purity increase of 

11%, and an average of rand index achieved 76.60% with an 

average rand index increase of 12.86%. In this case, the 

accuracy level based on the accuracy and quality of clustering 

based on purity and rand index from Fuzzy k-Means KL 

Divergence give good result for clustering categorical data.  

V. CONCLUSION 

Based on the discussion results, it can be concluded that the 

Kullback-Leibler (KL) Divergence can be successfully used 

for clustering categorical data. The mutual information of KL 

Divergence between the joint distribution and the product 

distribution from two marginal distributions is used. The 

experiment was run using six datasets from UCI Machine 

Learning to explore the performances. The results are 83%, 

82.39%, 76.60% in terms of accuracy, purity, and rand index 

average, respectively. These experimental results show that 

the fuzzy k-Means KL Divergence algorithm provides good 

results both from clustering quality and accuracy for 

clustering categorical data as compared to Fuzzy Centroid and 

Fuzzy k-Partition. In future works, we are going to explore 

the different combination and condition of mutual 

information of KL Divergence to improve the accuracy.  
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