
136 

 

Affine Shape Comparison Using Different Distances 

Khalid Aznag#, Toufik Datsi#, Ahmed El Oirrak#, Essaid El Bachari# 

# Computer Science Department, Cadi Ayyad University, Marrakesh, Morocco 

 E-mail: khalid.aznag@ced.uca.ac.ma 

 

 
Abstract— In this work, we propose to compare affine shape using Hausdorff distance (HD), Dynamic Time Warping (DTW), Frechet 

(DF), and Earth Mover distance (EMD). Where there is only a change in resolution shape distance are computed between shape 

coordinates because the distance is not invariant under rotation or affinity. In case of transformation, distances are calculated not 

between shape coordinates but between Arc length or Affine Arc length. Arc length is invariant under rotation while Affine Arc 

length is invariant under affinity. The main advantage is invariance under change of resolution, rotation, and affinity. 
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I. INTRODUCTION 

A study of affine shape is needed in certain problems that 

arise in bioinformatics and Pattern Recognition. The affine 

shape of finite point configurations has been introduced and 

studied in a series of papers by Sparr [1], [2]. In [2] a 

reconstruction algorithm, by using affine shape, has been 

proposed. To retrieve an image from a large database, we 

need shape descriptors that have sufficient discriminatory 

properties and are robust to noise. These descriptors should 

be invariant to translation, rotation, scale and also affinity. 

Shape matching is a fundamental problem in computer 

vision: given two shapes and , one wants to determine how 

closely resembles , according to some distance measure 

between the shapes. In order to measure the similarity of  

and independently of transformations such as translations or 

rotations and affinity. The problem has received a lot of 

attention, both in the computer vision and computational 

geometry community; see the surveys by Hagedoorn and 

Vetkamp [3] and Alt and Guibas [4]. An efficient and robust 

shape representation method for shape similarity retrieval is 

proposed by Abbasi et al [5].  In [6] examine the 

performance of the representations under affine 

transformation.  The paper [7] introduces a new technique 

for multi-scale curvature computation on a smoothed 3-D 

surface.  

In this paper, we evaluate each metric in two ways. We 

first examine the distances produced when the metric is used 

to discriminate one shape from another. We then examine 

the metric under transformations and under change of 

resolution. Figure 1 presents all the possible scenario to 

compare two shapes.  

The remainder of this paper is organized as follows: In 

Section II, we briefly provide background information on 

Frechet distance, Earth Mover distance, Dynamic time 

warping and Harsdorf distance. 

 
Abbreviations  

DTW Dynamic Time Warping 

HD Hausdorff distance 

EMD Earth Mover distance 

DF Frechet distance 

Notation  

X  Curve with 31 points. 

X%  Transformed curve of X . 

iX  Point on curve X . 

i
X%  Point on curve X% . 

rX  Denote the same curve X but with a change in 

resolution (curve with 51 points). 

bX  Noised curve. 

sX  Transformed curve of X by similitude (rotation 

+ translation). 

aX  Transformed curve of X by affinity. 

xL  Arc Length for X . 

xL
%

 Arc Length for X% . 

xAL  Affine Arc Length for X . 

xAL
%

 Affine Arc Length for X% . 
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Fig. 1 Scenario to compare two shapes 

 

The remainder of this paper is organized as follows: In 

Section II, we briefly provide background information on 

Frechet distance, Earth Mover distance, Dynamic time 

warping and Harsdorf distance. In Section III, we use Arc 

length or Affine Arc clength to compare between shapes 

under similitude or affinity transformation, section IV 

presents some experiments results and discussion. Finally, 

we conclude the work and highlight some possible 

perspectives in Section V.  

Let ( , )X x y=  denote a 2D curve then X%  denote either 

( rX , bX , aX , sX ). 

II. PRELIMINARIES 

A. Frechet distance 

The Frechet distance is a measure of similarity between 

curves that take into account the location and order of the 

points along the curves. It is named after Maurice Frechet 

[8]. 

Let X and X%  be two given curves. 

( ( ), ( ))

( ( ), ( ))

X x t y t

X x t y t

=


= % % %
                                   (1) 

Then, the Frechet distance between X  and X%  is 

defined as the infimum over all reparameterizations α  and 

β  of [0,1]  of the maximum over all [0,1]t ∈  of the 

distance between ( ( ))X tα  and ( ( ))X tβ% .  

In mathematical notation, the Frechet distance ( , )F X X%  

can be expressed as: 

, [0,1]
( , ) inf max ( ( ( )), ( ( )))

t
F X X d X t X t

α β
α β

∈
=% %  (2) 

where d is a distance function. For two curves X and X%  

of lengths m and n respectively, discrete distance 

( , )DF X X%  is given by 
,m nDF , where 

,m nd  is obtained 

using the following dynamic programming recurrences 

(Algorithm 1): 

Synthetic curve manipulated in these experiments is 

given by the following equation: 

( ) 2 co s( )
[0 , 2 ]

( ) s in ( ) 0 .5 s in (5 )

x t t
w h ere t

y t t t
π

=
∈

= +

   (3) 

 

Algorithm 1    Discrete Frechet distance 

1: Procedure ( , )DF X X%  // The DF between X and X%  

2: 0,0 0 0( , )DF d X X← %  

3:  for j=1 to n do 

4:         0, 0, 1 0 0max( , ( , ))j jDF DF d X X−= %  

5:  end for 

6:  for i=1 to m do 

7:           ,0 1,0 0max( , ( , ))
i i i

DF DF d X X−= %  

8:  end for 

9: for i=1 to m do 

10:   for j=1 to n do 

11: , , 1 1, 1, 1 0max(min( , , ), ( , ))i j i j i j i j iDF DF DF DF d X X− − − −= %         

12:   end for 

13: end for 

14: return ,m n
DF                          // The distance is ,m n

DF  

15: end procedure 

 

In the experiments, we choose n=31 and m=51 sizes for 

original curve and for the same curve but with another 

resolution. 

B. Earth mover distance 

The Earth Mover's Distance (EMD) [9] is a method to 

evaluate dissimilarity between two multidimensional 

distributions in some feature space where a distance 

measure between single features, which we call the ground 

distance is given. This can be formalized as the following 

linear programming problem: 
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Let 
11( , ),..., ( , )

mx m x
X X w X w= be the first signature 

with m clusters, where iX  is the cluster representative and 

ixw is the weight of the cluster; and  

11( , ),..., ( , )
mx m x

X X w X w=
% %

% % %  the second signature with 

n clusters; and [ ]
ij

D d= the ground distance matrix where 

ijd is the ground distance between clusters 
iX  and j

X% . 

We want to find a flow [ ]ijF f= , with 
ijf the flow 

between iX  and j
X% , that minimizes the overall cost 

subject to the following constraints: 

1 1

( , , )
m n

i j i j

i j

W X X F f d
= =

=  %       (4)                                                                                                                                                                                             

1

1

0 , 1 , 1

, 1

, 1

i

j

i j

m

i j X

i

n

i j X
j

f i m j n

f w i m

f w j n

=

=


 ≥ ≤ ≤ ≤ ≤



≤ ≤ ≤



≤ ≤ ≤




 %

     (5) 

                 

1 1 1 1

min( , )
i j

m n m n

ij X X
i j i j

f w w
= = = =

=   %         (6) 

The first constraint allows moving supplies from X  to 

X%  and not vice versa. The next two constraints limits the 

amount of supplies that can be sent by the clusters in X  to 

their weights, and the clusters in X%  to receive no more 

supplies than their weights; and the last constraint forces to 

move the maximum amount of supplies possible. We call 

this amount the total flow. Once the transportation problem 

is solved, and we have found the optimal flow
*F , the 

earth mover's distance is defined as the work normalized 

by the total flow: 

*

1 1

*

1 1

( , )

m n

i j i j

i j

m n

i j

i j

f d

E M D X X

f

= =

= =

=

 

 
%

    (7) 

C. Dynamic type warping 

Dynamic time warping (DTW) [10] is an algorithm for 

measuring the similarity between two temporal sequences 

which may vary in time or speed. The following code 

(Algorithm 2) illustrates the implementation of the 

dynamic time warping algorithm. 

 

Algorithm 2 Dynamic Time Warping Algorithm 

1: Procedure ( , )DTW X X%  // The DTW between X and 

X%  

 2: 
0,0 0DTW ←  

 3: for i=1 to n do 

 4:       0iDTW ← ∞  

 5:  end for 

6:   for j=1 to m do 

7:      0 j
DTW ← ∞  

8:  end for 

9:   for i=1 to m do 

10:     for j=1 to n do 

11:   

1, , 1 1, 1

cos ( , )

cos ( , , )

i j

ij i j i j i j

t d X X

DTW t Min DTW DTW DTW− − − −

←

← +

%

 

12:    end for 

13: end for 

14: return mnDTW                     // The distance is 

mnDTW  

15: end procedure 

D. Hausdorff distance 

The Hausdorff distance [11] is a mathematical 

construct to measure the "closeness" of two sets of 

points that are subsets of a metric space. 

Let X and X%  be two 2D curves. We define their 

Hausdorff distance ( , )DH X X% by: 



















=

∈∈

∈∈

)
~

,(infsup

),
~

,(infsup

max)
~

,(

~~

~~

ji
XXXX

ji
XXXX

XXd

XXd

XXDH

ji

i
j

  (8) 

where sup represents the supremum and inf the infimum. 

E. Chamfer distance 

Given a neighbourhood and associated move lengths, 

the chamfer distance [12] between X and X%  relative to 

this neighbourhood is the length of the shortest digital arc 

form X and X% . 

 

( , ) m in || ||
j

i

i j
X X

X X

C h X X X X
∈

∈

= − % %

% %   (9) 

III. SIMILITUDE AND AFFINITY TRANSFORMATIONS 

In case there is no transform between X and X%  we can 

use directly HD, EMD, DF, and DTW. In case there is a 

transformation we must first extract invariant signatures 

against this transformation, then we compare these 

signatures. Among these signatures, we can use arc length 

in case rotation, and affine arc Length in affinity case. 

A. Similitude and Arc length invariance 

Curvature: Let X be a smooth curve with position 

vector ( )r s
r

where s is the arc length parameter. The 

curvature k of X  is defined by: 

|| ||
dT

k
ds

=

r

                           (10) 

where  T
r

 is the unit tangent vector. If a curve X  is 

defined parametrically by x(t) and y(t), then its arc length is 

defined by 
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2 2 1/2( )x yτ = + & &                        (11) 

Where x& denote first derivative of x and y& first 

derivative of y. Under the action of rotation contours 

coordinates of the second image (Figure 7) are related to 

coordinates contours of the first image by 

cos sin

sin cos

x x

y y

φ φ

φ φ

    
=    

−    

%

%
             (12) 

Then 

cos sin

sin cos

x x y

y x y

φ φ

φ φ

= +


= − +

%

%
                      (13) 

cos sin

sin cos

x x y

y x y

φ φ

φ φ

 = +


= − +

%& & &

%& & &

                      (14) 

So 

 −++= 2/122 ))sincos()sincos(( φφφφτ xyyx &&&&  

2/12

22

))sin(sincos(2

)cos(sincos2)cos((

φφφ

φφφφ

xyx

yyxx

&&&

&&&&

−+−

++= 
 

 += 2/122 )( yx &&
 

With                        
2 2cos sin 1φ φ+ =                        (15) 

B. Affinity and affine arc length invariance 

Arc Length is invariant under similarity transforms; i.e. 

rotation, translation, and uniform scaling. However, under 

general affine transforms, the change in curvature is not a 

linear function of the transformation matrix. Affine Arc 

Length has been defined as an alternative for Arc Length 

which changes linearly under affine transforms. Suppose 

that X  is parameterized curve. Then the special affine 

curvature (or equi-affine curvature) is given by 

 

( )xy xy− &&& &&&                                  (16) 

 

Here x& denotes the first derivative of x and x&& denote 

second derivative. The main disadvantage of the affine 

length is that its computation requires higher order 

derivatives. The computation starts from convolving each 

coordinate x(t) and y(t) of the curve with a Gaussian 

function ( , )g t σ . In continuous form we have: 

( , ) ( ) ( , )

( , ) ( ) ( , )

x t x t g t

y t y t g t

σ σ

σ σ

= ⊗


= ⊗
              (17) 

x x g

y y g

= ⊗


= ⊗

& &

& &
                           (18) 

x x g

y y g

= ⊗


= ⊗

&& &&

&& &&

                         (19) 

Where ⊗ denote convolution operator. x& , x&& denote 

respectively first and second derivative approximation. The 

1D Gaussian function ( , )g t σ  of width σ  is defined as 

follow: 
2

2
2

1
( , )

(2 )

u

g t e σσ
π

−

=           (20) 

Under general affinity coordinated in the two images are 

related by the formula: 

x x
A

y y

   
=   

   

%

%

                        (21) 

where 

12 1 2

21 2 2

a a
A

a a

 
=  
 

                       (22) 

The equation (16) is invariant under the action of 

affinity (with the condition | | 1A =  ) where | |A  denote 

determinant of matrix A. 

In fact 

11 12

21 22

x a x a y

y a x a y

= +


= +

%

%

                         (23) 

So 

11 12 21 22 11 12 21 22

11 21 11 22 12 21 12 22 11 21 11 22 12 21 12 22

11 22 12 21

( )( ) ( )( )

( )( ) ( )( )

x y x y

a x a y a x a y a x a y a x a y

a a xx a a xy a a yx a a yy a a xx a a xy a a yx a a yy

a a xy a a y

−

= + + − + +

= + + + − − − −

= +

% % % %& && && &

& & && && && && & &

&&& &&& &&& &&& &&& &&& &&& &&&

&&& &&&
11 22 12 21

12 21 11 22
( ) ( )

x a a xy a a yx

a a xy xy a a xy xy

− −

= − + −

&&& &&&

&&& &&& &&& &&&
 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to demonstrate the effectiveness of the proposed 

methods, we use the different distances HD, EMD, DTW, 

and DTW. However, distances EMD, HD, DF and DTW 

depends on the starting point, for instance, two visually 

similar curves but a shift can have a very large distance 

(see Figures 8 and 9). Figure 8 shows the shift between Arc 

Length, coordinates in case of resolution. It is clear from 

Table 1 and Table 4 that DF gives good results then DTW 

doesn't.  

A. Curve with resolution and noise 

If no transformations are possible between X and X% , 

then we can use directly HD, EMD, DF, and DTW between 

coordinates; if there is only change in resolution for the 

shape we compute a distance between shape coordinates 

because the distance is not invariant under transformation 

e.g. rotation. As shown in Figure 2; the curve 2.b) is the 

same as 2.a) but with another resolution, 2.c) noisy curve 

and 2.d) affinity curve. Tables 1, 2, 3 and 4 present some 

results. 
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(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

 

 

 

 

 

 

(d) 

 

 

 

 

 

 

Fig. 2 (a). Test curve with resolution 30, (b). Test curve with resolution 50, 

(c). Test curve with noise added, (d). Affinity test shape 

 

TABLE I 

DF BETWEEN , , bX Y X  AND rX  

( , )rDF X X
 

( , )DF X Y
 ( , )bDF X X

 

0.2317 39.4911 0.1622 

 
TABLE II 

EMD BETWEEN , , bX Y X  AND rX  

( , )rEMD X X  ( , )EMD X Y  ( , )bEMD X X  

0.0484 5.3797 0.0825 

 
TABLE III 

HD BETWEEN , , bX Y X  AND rX  

( , )rHD X X  ( , )HD X Y  ( , )bHD X X  

0.2317 38.0591 0.3297 
 

TABLE IV 

DTW BETWEEN , , bX Y X  AND 
rX  

( , )rDTW X X  ( , )DTW X Y  ( , )bDTW X X  

5.1880 654.6982 3.3882 

B. Arc length invariant under rotation 

In case there is a transformation we must extract 

invariant signature against the transformations, then we 

compare these signatures, for example for our case: a 

rotation we propose first to extract a quantity invariant with 

respect to rotation, then secondly we calculate HD, EMD, 

DF between these invariant, among these signatures we can 

use Arc Length, and Affine Arc Length.  Also, in general if 

there is transformation distances are calculated not between 

shape coordinates but between Arc length. Figure 3 shows 

a curve and its transformed (rotation). Figure 4 shows the 

Arc length for curves in Figure 3. Table 5 presents a 

different distance between the curve and its transformed. In 

Table 6 different distance between Arc length are presented. 

(a) 

(b) 

(c) 

Fig. 3 Curves and its transformed. (a) Curve. (b) Rotation. (c) Resolution 
 

TABLE V 

 DIFFERENT DISTANCE BETWEEN ARC LENGTH 
 

Distance ( , )X X
D L L %  

HD 420.0281 

DTW 3.2411e + 003  

Chamfer 54.5073 

 
TABLE VI 

DISTANCE BETWEEN ARC LENGTH 

 

( , )aHD X X  ( , )aDF X X  ( , )aEMD X X  

311.5896 311.5896 78.5955 

 

(a) 
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(b) 

(c)  
Fig. 4 Arc length for curves in Figure 3; a, b and c respectively 

C. Affine Arc length under affinity 

In case the affinity distance is calculated between Affine 

Arc length, Affine Arc length is invariant. Affinity matrix 

used in our case is defined by: 

0.3265 0.3852

5.0838 2.9351
A

− 
=  

− 
                     (24) 

(a)  

 

 

 

 

 

(b)  

 

 

 

 

 

(c)  

 

 

 

 

 

Fig. 5 Curves and its transformed. (a) Curve. (b) Transformed rotation. (c) 

Resolution 

Figure 5 shows a curve and its transformed (affinity). 

Figure 6 shows the Affine Arc length for curves in Figure 5. 

In Table 7 different distance between the curve and its 

transform are presented. In Table 8 different distance 

between Affine Arc length are presented. 

(a) 

(b) 

(c) 

Fig. 6 Affine Arc Length for curves in Figure 5; a, b and c respectively 

TABLE VII 
DISTANCE BETWEEN AFFINE ARC LENGTH 

 

( , )aHD X X  ( , )aDF X X  ( , )aEMD X X  

141.5987 10−×  
142.3093 10−×  

133.3750 10−×  

 
TABLE VIII 

DIFFERENT DISTANCE BETWEEN AFFINITY ARC LENGTH 

 

Distance ( , )aD X X  

HD 2.0611 

DTW 108.3047 

Chamfer 24.7682 
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Fig. 7 Affine Arc Length for real image 

Fig. 8 Arc Length for X and rX  

 

 
 

 

 
 

 

 

 

(a) 

 

 

 

 
 

 

 
 

 

 

 

 

(b) 
 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 9 (a):Coordinates x of X and rX  (b):Coordinates y of  X and 

rX  

 

 

 

 

 

 

a. Image with number '1' 

 

 

 

 

 

 

 

 

 
b. Image with number '1' 

 

 
 

 

 

c. Contour of image in Figure (7.a) 

 
d.  Contour of image in Figure (7.b) 

 

e.  Affine Arc length for image (7.a) 

 
f. Affine Arc length for image (7.b) 
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V. CONCLUSIONS AND FUTURE WORKS 

In this paper we have presented a comparison affine 

shape with different types of distances. We showed that 

DTW, HD, EMD, and DF are not invariant under rotation 

and affinity. If no transformation is possible between 

curves, we can use directly HD, EMD, DF, and DTW. In 

case there is a transformation we extract invariant signature, 

then we compare these signatures. But using Arc length 

and Affine Arc length invariance is assured respectively for 

rotation and affinity. Where there is shift DTW is not 

suitable. As future perspectives, we are working on 

integrating our study in the context of a 3D object. 
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