
123

Virtualized Fog Network with Load Balancing for IoT based

Fog-to-Cloud

Istabraq M. Al-Joboury #, Emad H. Al-Hemiary #

Al-Nahrain University, College of Information Engineering, Iraq

 E-mail: estabriq_94@coie-nahrain.edu.iq, emad@coie-nahrain.edu.iq

Abstract— Fog Computing is a new concept made by Cisco to provide same functionalities of Cloud Computing but near to Things to

enhance performance such as reduce delay and response time. Packet loss may occur on single Fog server over a huge number of

messages from Things because of several factors like limited bandwidth and capacity of queues in server. In this paper, Internet of

Things based Fog-to-Cloud architecture is proposed to solve the problem of packet loss on Fog server using Load Balancing and

virtualization. The architecture consists of 5 layers, namely: Things, gateway, Fog, Cloud, and application. Fog layer is virtualized to

specified number of Fog servers using Graphical Network Simulator-3 and VirtualBox on local physical server. Server Load

Balancing router is configured to distribute the huge traffic in Weighted Round Robin technique using Message Queue Telemetry

Transport protocol. Then, maximum message from Fog layer are selected and sent to Cloud layer and the rest of messages are deleted

within 1 hour using our proposed Data-in-Motion technique for storage, processing, and monitoring of messages. Thus, improving the

performance of the Fog layer for storage and processing of messages, as well as reducing the packet loss to half and increasing

throughput to 4 times than using single Fog server.

Keywords— internet of things; cloud computing; fog computing; load balancing; data in motion; MQTT; packet loss; SLB.

I. INTRODUCTION

Internet of Things (IoT) is the future of the Internet and

most technologies for wireless telecommunication [1].

Things in IoT integrate and communicate with each other to

transfer the useful information for intended persons. Things

can be anything like pen, car, wristwatch, chair with smart

sensors on them [2]. The number of Things grows rapidly;

therefore, they will need IPv6 to get connected to the

Internet. All application domains can be enabled by IoT to

provide ubiquitous services and to improve societies and

governments. The traditional architecture of IoT includes

five layers: Things, gateways, middleware, application and

business layer [3, 4]. Messages from Things such as sensors

and actuators need to be stored in real time. Cloud

Computing (CC) offers storage and processing in three

different types: Software as a Service (SaaS) and

Infrastructure as a Service (IaaS) and Platform as a Service

(PaaS) [5]. CC causes high response time and low security

because it could be located in different region of Things [6];

therefore, Cisco has been proposed a new concept to handle

a huge number of messages with less response time and

higher security called Fog Computing (FC). FC provides

storage, networking and processing as the same as CC;

however, FC physically close to Things and users [7]. FC

contains routers, switches, firewalls, Access Points (APs)

and servers. It is recommended for delay-sensitive

applications like healthcare and transportation [8].

Virtualization technology is the appropriate solution to

achieve networking, computing and processing on multiple

Virtual Machines (VMs) with a single physical server to

reduce cost, power, complexity, and space. There are several

organizations like Cisco, TELCO, ALTO, TCS, Avaya

Networks, NICIRA, HP, F5, Nuage, Oracle Solaris and

Cumulus Networks provide virtualization. It makes a middle

layer known as Hypervisor between the physical and

software layer to run multiple Operating Systems (OSs)

simultaneously on single server such as Kernel Virtual

Machine (KVM) [9], VirtualBox [10], Xen [11], and

VMware [12].

Servers may fail to handle a huge number of messages

from sensors and actuators in very fast and efficient which

might lead to packet loss on application servers' due to

limited bandwidth and capacity of queues. Therefore,

multiple server arrangements with Load Balancing (LB)

could solve the problem and share processing speed. LB is

applied in some sites like Amazon which used High

Availability Proxy (HAProxy) [13] with Network Address

Translation (NAT) to employ the Least Connection (LC)

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 4 (2020) NO 3

e-ISSN : 2549-9904

ISSN : 2549-9610

124

technique. Other techniques like Nginx Plus API [14] and

Elastic Beam [15] used layer 7 LB instead of layer 4 of Open

Standard Interconnection (OSI). However, both are not free

to use.

There are few works have been proposed the integration

between Fog and Cloud or simply (F2C) as in [16], the

authors introduce F2C architecture and its advantages with

main challenges and implement IoT based F2C and IoT

based Cloud architectures using Tareador simulation tool to

provide the performance comparison between them in terms

of execution time and speedup. The results show IoT based

F2C is better than IoT based Cloud because it is reduced the

execution time. However, the authors have not considered

IoT protocols in the architecture and not implemented the

proposed architectures practically. But, the authors in [17]

implement F2C computing on real application for chronic

obstructive pulmonary disease (COPD) patients and the

results show that the F2C improves the quality of life of

patients. None of two previous papers have considered the

delay on their proposed, while the authors in [18], propose

distributed service allocation strategy for both resource

offering and service requirements based on F2C computing

in order to reduce delay of service allocation and decrease

traffic load on Cloud. Then, the same authors in [19]

minimize the delay of the services and provide the capacity

requirement. In addition, the queuing theory are considered

in F2C concept as in [20], the optimal workload allocation is

proposed based F2C architecture to reduce power

consumption and delay. The results show that F2C is better

performance that Cloud. We notice that the previous

researchers have not been tested and implemented F2C with

IoT protocols. Some authors try to propose an opposite path

from Cloud to Fog (C2F) as in [21], the authors propose C2F

architecture for monitoring healthcare network and smart

homes. The results show C2F provides the better service to

Things. Finally, the authors in [22] propose IoT architecture

based on Cloud to combine Message Queue Telemetry

Transport (MQTT) and Hypertext Transfer Protocol (HTTP)

protocols and to distribute traffic among virtual servers using

HAProxy. The performance evaluation of protocols is

presented in terms of number of clients and Central

Processing Unit (CPU) cores. The results show the MQTT

protocol has better performance than HTTP. These authors

have considered protocols, however the architecture is based

on Cloud and not based on F2C. The Server Load Balancing

(SLB) router is an IOS image of Cisco router. Inside SLB

router, a virtual server is defined to represent a list of real

servers called server farm. SLB router redirects messages

from clients to this virtual server, and then the virtual server

redirects messages to one of the servers in the server

farm.SLB router is used in this paper IoT based Fog to

distribute messages among specified number virtual Fog

servers using Type 2. The aim of this paper is to propose IoT

based F2C architecture for virtualizing Fog network with LB

to mitigate the problem of packet loss and to increase

throughput. Then, performance analysis is provided over a

high volume of traffic. The proposed architecture uses

MQTT protocol for communication between machines and

end users.

The main contribution of this paper is to propose

architecture named IoT F2C. The proposed architecture tries

to reduce the packet loss on Fog layer using LB and

virtualization and to reduce the high traffic on Cloud layer

using the proposed Data-in-Motion (DM) technique with

MQTT protocol. Up to our knowledge, this type of load

balancer has not been used by researchers previously with

IoT based F2C.

The rest of this paper is organized as follows: Section II

and III provides an overview of MQTT protocol and SLB.

Section IV, discusses the proposed IoT based F2C

architecture and virtualized Fog network with LB. Finally,

Section V and VI presents results and concludes this paper.

II. MQTT PROTOCOL

The MQTT protocol was created by Stanford-Clark and

Nipper in 1999 [23]. Thereafter, MQTT was adopted by

Advancing Open Standards for the Information Society

(OASIS) in 2014 [24]. Then it standardized by ISO/IEC

20922 [25]. MQTT is customized for sensitive application

like IoT and Machine to Machine (M2M). It works with

Topic instead of using IP address and based on a

Transmission Control Protocol (TCP). It used for

applications and electronics with low power, bandwidth and

cost [26]. There are two elements of MQTT: clients could be

publisher, or subscriber to a certain topic, while the second

type is a centralized server called broker. Subscribers do not

need to know the IP addresses of publishers. Whilst, the

broker must be configured with the IP and port of protocol

[27]. The process of the protocol starts when client chooses

to be either publisher or subscriber so that the broker

forwards messages to subscribers [28].

The broker sets up a connection between client and broker

with unlimited number of clients, then nominates the

subscribed clients to specific topics to forward messages to

them. The process works as the same hub/spoke model.

Topics are organized as topic/subtopic/value like

"homecare/heartbeat/100". Clients can subscribe to multiple

topics at the same time. For protection purposes, the broker

employs Secure Sockets Layer (SSL) / Transport Layer

Security (TLS) encryption methods. These encryptions are

enabled between broker and clients as in HTTP encryption

methods. broker requests username and password for each

client [29, 30]. MQTT has a synchronous communication, a

lower overhead and three levels of quality of services (QoS)

as shown in Figure 1, the QoS for a delivery assurance

between clients and broker are [31]:

1) QoS level 0: This level does not deal with

acknowledgement, in which the clients publish

messages to clients subscribed to the same topic

through a broker. Message is received at most once and

does not know if the message is delivered or not.

Therefore, loss may occur in this situation. Level 0 also

known as fire and forget.

2) QoS level 1: This level sends acknowledgement every

time clients publish messages. The message is received

at least once. In this level, if data gets lost the broker

retransmits data to the publisher.

3) QoS level 2: This level requires four-way handshake to

deliver data at exactly once and this may increase the

overhead.

125

Fig. 1. The operation of MQTT: (a) with QoS level 0 (b) with QoS level 1

(c) with QoS level 2

III. SLB

SLB is a Cisco router and acts as router and load balancer

in the same IOS. It is used to distribute requests from clients

to list of number of servers called server farm. SLB router

has a specific number of interfaces that can be assigned with

IP address. Also, it contains virtual load balancer inside the

router that can be assigned with virtual IP address. Clients

use this virtual IP address as the destination field. SLB has

two types of techniques to distribute messages, namely:

Weighted Round Robin (WRR) and Weighted Least

Connection (WLC) to provide high availability. Weighted on

these techniques is configured based on server capabilities in

server farm [33]. SLB reduces the number of required

hardware, space, cost and energy because holds the functions

of LB and routing in the same device. SLB facilitates the

maintenance of configuration when new servers added or old

servers removed and this process can be done without

affecting any problems in configuration [34]. The virtual

load balancer can be divided into two types, namely:

Directed means the virtual load balancer can be configured

in any range of IP address. This type need to configure NAT

protocol between the virtual load balancer and server farm in

order to translate the IP address of that load balancer to

server according to technique used. The second type is

dispatched indicates the IP address of virtual load balancer is

configure with the same range of server farm; however, this

type is not applicable with multiple routers [35, 36].

IV. IOT BASED F2C ARCHITECTURE

The proposed architecture IoT based F2C with virtualized

Fog and LB consists of five layers over two sites: site 'A' (at

Al-Nahrain University, College of Information Engineering),

and site 'B' at Ministry of Higher Education and Scientific

Research, Department of Research and Development

(MoHESR/ RRD) and is discussed as follows:

A. Thinks layer

This layer consists of Things located at site 'A' with

features of low cost, power and bandwidth such as sensors,

actuators and microcontrollers. In this paper, one real pulse

rate sensor [37] and thousands of virtual sensors are used to

sense from patient's body. These virtual sensors are

generated using Tsung tool [38]. Tsung is installed on

Personal Computer (PC) with characteristics: Ubuntu

14.04.5 LTS OS, Memory: 3.7 GB, processor: Intel(R) Core

(TM) i3-380 CPU @ 2.53GHz *4, disk: 488.1 GB.

NodeMCU [39] with WiFi built-in is used to collect

messages from Things and transmit it to the up layers.

Sensors are programed using C/C++ and XML programing

languages for real sensor by Arduino Integrated

Development Environment (IDE) version 1.6.12 and virtual

sensors respectively. Things are configured with MQTT

version 3.1.1 protocol QoS level 0 and 1 to communicate

with other layers.

B. Gateway layer

This layer consists of IEEE802.11n Mikrotik AP

(RB2011UAS-ZHND-IN), Cisco switch (Catalyst 2900G

Series) and Cisco router (Catalyst 2600G Series) located at

site 'A'. AP is used to transmit messages from Things layer

to Fog layer to be processed and stored. While, Cisco switch

is used to connect different devices together. Opent Shortest

Path (OSPF) [40] is configured in Cisco router to forward

messages to the Internet.

C. Fog layer

Fog server receives messages from Things and stores it

temporarily in MySQL database for specific time (for

example 1 hour) and located at site 'A'. Fog server is HP

ProLiant 380 G7 16 Core 32 based Ubuntu server 14.04 LTS

with 32 GB of dynamic memory and 500 GB of permanent

storage. Middleware script is adding to Fog layer to

subscribe messages using Python Application Programming

Interface (API) with help of PHP-Mosquitto broker. This

layer has two scenarios:

1) Single Server: This scenario consists of single server

based Linux where all messages from Things are processed

by this server as shown in Figure 2; however, packet loss

may occur in single server because of a large number of

messages.

2) Multiple Servers: This scenario consists of specific

number of servers. Fog servers is virtualized using

VirtualBox that is connected to Graphical Network

Simulator-3 (GNS3). SLB router (c3640-jk9s-mz.124-16.bin)

is configured inside GNS3 and is responsible for performing

126

Node.JS

Subscriber

Python API

Subscriber

Internet

MQTT_spy on

PC
Tenda AP

Korek Telecom Mobile

Operator

MQTTool

on IOS phone

IoT MQTT Dashboard

on Android phone

Edge Routers

HP ProLiant 380 G8 Server with

MongoDB, Mosquitto

Public server - site B

Cisco router 2621

Cisco router 2621

HP ProLiant 380 G7 Server with

PHP-Mosquitto, MySQL (LAMP)

Public server - site A

Cisco Switch Catalyst

2924

Traffic generator (Tsung)

WiFi

Real heart rate sensor

Attached to human body

NodeMCU

Things Layer

Gateway Layer

Fog Layer

Cloud Layer

Application Layer

PDE on PC

Mikrotik AP

PHP5 and MySQLi

Publisher

Fig. 2. IoT based F2C architecture with single server

LB WRR technique where messages are distributed on

multiple virtual servers. Due to a large number of VMs,

only one VM is installed with OS and configured with

MySQL database, Mosquitto and Network configuration.

Then, this one is cloned to 15 virtual Fog servers. SLB is

configured with OSPF routing protocols to forward

messages from Fog layer to the Internet. Cisco switch is

presented in GNS3 to mediate and combine all virtualized

Fog servers, Internet, and SLB and is connected to the real

hardware of proposed IoT architecture as shown in Figure

3 and 4. It can notice that this scenario excludes the Cisco

router (Catalyst 2600G Series) from gateway layer because

SLB has the functionalities of router, thus it reduces

number of required hardware.

After each scenario, maximum value from MySQL

database in each server is selected and publish it every 1

hour to Cloud layer using PHP5 and MySQLi

programming language. The proposed technique of

combination of Python API with PHP5 and MySQLi

scripts is named DM.

D. Cloud layer

Cloud server receives the selected messages from each

scenario every 1 hour and stores it permanently in

MongoDB using Node.js with the help of Mosquitto broker.

Messages in Cloud are formatted in Java Script Object

Notation (JSON). Cloud server is HP ProLiant 380 G8 16

Core based Ubuntu server 14.04 LTS with 32 GB of

dynamic memory and 500 GB of permanent storage and

layer located at site 'B'.

E. Application layer

Physicians and patients’ family can monitor messages

directly from Things using Processing Development

Environments (PDE) version 3.2.1. Also, messages can be

monitored from Fog and Cloud layer using MQTTool,

MQTT Dashboard Tool, and Mqtt Spy by smart phones or

PC.

V. RESULTS

Results are discussed with explanation in this section.

The performance of throughput and packet loss are

measured; both depends on bandwidth; therefore, link

bandwidth are also measured. Internet Performance

Working Group (iperf) tool is used to compute bandwidth

of link. This tool is used with TCP/UDP and based on

client/server model.

124

Internet

MQTT_spy on

PC
Tenda AP

Korek Telecom Mobile

Operator

MQTTool

on IOS phone

IoT MQTT Dashboard

on Android phone

Edge Routers

HP ProLiant 380 G8 Server with

Mosquitto, MongoDB

Public server - site B

Cisco router 2621

Cisco Switch Catalyst

2924

Traffic generator (Tsung)

WiFi

Real heart rate sensor

Attached to human body

NodeMCU

Things Layer

Gateway Layer

Fog Layer

Cloud Layer

Application Layer

PDE on PC

Mikrotik AP

Node.JS

Subscriber

Virtual network using GNS3

and VirtualBox inside Fog

server

Fig. 3. IoT based F2C architecture with multiple server

Fig. 4. Virtual network using GNS3 and VirtualBox inside Fog server

In this paper, IPerf is used with TCP because MQTT

protocols based on TCP. The CLI used in the server side is:

iperf –s

where –s appends the host in server side. While, the

CLI used in the client side is:

iperf –c x.x.x.x

Where –c means the host in client side and the x.x.x.x is

the IP address of server side. We measure bandwidth

between the Things layer located at site 'A' and Cloud layer

located at site 'B' during the running test of the Tsung tool.

The average bandwidth can be shown in Figure 5.

The Encapsulation of MQTT message transmitted from

a client to a server is formed normally by adding a

specified number of bytes in each layer to create the header

as shown in Figure 6. The frame length becomes 77 bytes

from an original of 9 bytes which represents the message

coming from application layer. The other 68 bytes

represent the total overhead of encapsulation. These

measurements are computed using Wireshark [41]. MQTT

frame is important to throughput and packet loss

measurements. Throughput can be defined as the number

of sucesscfful packets per unit time. Figure 7 shows the

average throughput of Fog layer in each scrnario and is

computed using Tsung tool and with the following

equation [42]:

 (1)

Fig. 5. Average bandwidth between Things and Cloud layer at site 'B'

125

Fig. 6. MQTT Frame structure (DL: Datalink, Net: Network, Trans:

Transport, App: Application)

Fig. 7. Average throughput of proposed IoT based F2C architectures with

LB

The results show that average throughput of MQTT-QoS

0 with LB and 4 servers is 4 times higher than MQTT-QoS

0 without LB, MQTT-QoS 0 with LB and 8 servers is 8

times higher than MQTT-QoS 0 without LB, and MQTT-

QoS 0 with LB and 16 servers is 16 times higher than

MQTT-QoS 0 without LB. Throughput depends on

bandwidth and the queue of servers. It can be notice from

results, there is a relationship between throughput and

number of servers with LB. Throughput increase n times

where n equal to number of servers.

Packet loss defined as number of packets of data fail to

reach the final destination when they travel through

network. Figure 8 shows the average packet loss of Fog

layer in each scenario and is computed using Tsung tool

and with the following equation [43]:

Fig. 8. Average packet loss of proposed IoT based F2C architectures with

LB

As the figure show, the use of LB increases Fog network

throughput and reduces packet loss to its minimum value

(2 times and 1 time in QoS 0 and QoS 1 respectively). This

result comes from the fact that using LB will distribute the

traffic over four virtual Fog servers, thus all messages

arrive safe and sound.

Fig. 9. Monitoring of SLBs

In Figure 9, the result from SLB router in GNS3 shows

that the IP address of SLB and number of connections. In

this test only two virtual Fog servers are running and one

sensor. At the one moment, seven messages are received in

SLB. Both servers have equal weight so that they can

receive messages equally according to WRR fashion.

VI. CONCLUSIONS

IoT based F2C architecture is proposed to enhance the

performance in terms of throughput and packet loss. The

proposed architecture is implemented practically over two

different sites in five layers: low cost and power Things,

gateway, Fog, Cloud, and application. Fog layer is

suggested in this architecture to improve performance such

as reduce delay, however packet loss for high traffic may

occur which impact on critical real-time applications like

healthcare. Performance analysis of two scenarios is

provided which the first scenario suggests using single Fog

server, while the second scenario mitigates packet loss by

employing LB and virtualization over 16 virtual servers.

SLB router is used for distributing the huge volume of

traffic from Things to according to WRR fashion.

Virtualization technology is used to reduce cost and power

using VirtualBox Type 2. GNS3 tool is used for creating a

virtual network topology with SLB, switch and virtual

servers that are created in VirtualBox. The emulated

network is connected to the Internet to create a real IoT

network. The results show that the second scenario reduces

packet loss to half and increases throughput than the first

scenario because the arrived messages are distributed

among a specific number of servers. Finally, the

connection between Fog and Cloud are provided using

proposed DM technique. The latter proves our reason for

choosing LB on the Fog layer instead of the Cloud because

the Fog lies in the middle of Things and Cloud, thus any

loss in the Fog will also result in loss in the Cloud

REFERENCES

[1] A. M. Rahmani, T. N. Gia, B. Negash, A. Anzanpour, I. Azimi, M.

Jiang, and P. Liljeberg, “Exploiting smart e-Health gateways at the

edge of healthcare Internet-of-Things: A fog computing approach,”
Future Generation Computer Systems, vol. 78, pp. 641–658, 2018.

DOI: 10.1016/j.future.2017.02.014.

[2] K. H. Rahouma, R. H. M. Aly, and H. F. Hamed, “Challenges and

Solutions of Using the Social Internet of Things in Healthcare and

Medical Solutions—A Survey,” Toward Social Internet of Things

(SIoT): Enabling Technologies, Architectures and Applications

126

Studies in Computational Intelligence, pp. 13–30, 2019.

DOI:10.1007/978-3-030-24513-9_2.

[3] N. Zou, S. Liang, and D. He, “Issues and challenges of user and data

interaction in healthcare-related IoT,” Library Hi Tech, vol. ahead-

of-print, no. ahead-of-print, 2020. DOI: 10.1108/lht-09-2019-0177.

[4] I. M. Al-Joboury and E. H. Al-Hemiary, “IoT Protocols Based

Fog/Cloud over High Traffic," The ISC Int'l Journal of Information

Security, vol. 11, no. 3, pp. 173–180, 2019. DOI:

10.22042/ISECURE.2019.11.3.23.
[5] S. Tuli, N. Basumatary, S. S. Gill, M. Kahani, R. C. Arya, G. S.

Wander, and R. Buyya, “HealthFog: An ensemble deep learning

based Smart Healthcare System for Automatic Diagnosis of Heart
Diseases in integrated IoT and fog computing environments,” Future

Generation Computer Systems, vol. 104, pp. 187–200, 2020. DOI:

10.1016/j.future.2019.10.043.
[6] T. S. Gunawan, M. H. H. Gani, F. D. A. Rahman, and M. Kartiwi,

“Development of Face Recognition on Raspberry Pi for Security

Enhancement of Smart Home System,” Indonesian Journal of

Electrical Engineering and Informatics (IJEEI), vol. 5, no. 4, Jan.

2017. DOI: 10.11591/ijeei.v5i4.361.

[7] E. M. Tordera, X. Masip-Bruin, J. Garcia-Alminana, A. Jukan, G.

Ren, J. Zhu, and J. Farre, "What is a Fog Node A Tutorial on

Current Concepts towards a Common Definition". arXiv preprint

arXiv:1611.09193, 2016.
[8] G. Javadzadeh and A. M. Rahmani, “Fog Computing Applications in

Smart Cities: A Systematic Survey,” Wireless Networks, vol. 26, no.

2, pp. 1433–1457, Dec. 2019. DOI: 10.1007/s11276-019-02208-y.
[9] Kernel-Based Virtual Machine (KVM), https://www.linux-kvm.org,

[Accessed: 15-Nov-2019].

[10] Oracle VM VirtualBox, https://www.virtualbox.org, [Accessed: 15-
Nov-2019].

[11] The Xen Project (Xen), https://www.xenproject.org, [Accessed: 15-

Nov-2019].

[12] Virtual Machine Software (VMWare), http://www.vmware.com,

[Accessed: 15-Nov-2019].

[13] “HAProxy,” powered by HAPROXY. [Online]. Available:

https://www.haproxy.org/. [Accessed: 15-Nov-2019].

[14] “MQTT Load Balancing and Session Persistence with NGINX

Plus,” NGINX. [Online]. Available:

https://www.nginx.com/blog/nginx-plus-iot-load-balancing-mqtt/.

[Accessed: 15-July-2019].

[15] “Scalable and Secure MQTT Load Balancing with Elastic Beam and

HiveMQ,” HiveMQ, 12-Sep-2016. [Online]. Available:

http://www.hivemq.com/blog/scalable-and-secure-mqtt-load-
balancing-with-elastic-beam-and-hivemq/. [Accessed: 15-Nov-2019].

[16] A. Al-Qerem, M. Alauthman, A. Almomani, and B. B. Gupta, “IoT

transaction processing through cooperative concurrency control on
fog–cloud computing environment,” Soft Computing, vol. 24, no. 8,

pp. 5695–5711, 2019. DOI: 10.1007/s00500-019-04220-y.

[17] X. Masip-Bruin, E. Marin-Tordera, A. Alonso, and J. Garcia, “Fog-
to-cloud Computing (F2C): The key technology enabler for

dependable e-health services deployment,” 2016 Mediterranean Ad

Hoc Networking Workshop (Med-Hoc-Net), 2016. DOI:

10.1109/MedHocNet.2016.7528425.

[18] V. B. Souza, X. Masip-Bruin, E. Marin-Tordera, W. Ramirez, and S.

Sanchez, “Towards Distributed Service Allocation in Fog-to-Cloud

(F2C) Scenarios,” 2016 IEEE Global Communications Conference

(GLOBECOM), 2016. DOI: 10.1109/GLOCOM.2016.7842341.

[19] V. B. C. Souza, W. Ramirez, X. Masip-Bruin, E. Marin-Tordera, G.
Ren, and G. Tashakor, “Handling service allocation in combined

Fog-cloud scenarios,” 2016 IEEE International Conference on

Communications (ICC), 2016. DOI: 10.1109/ICC.2016.7511465.
[20] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal

Workload Allocation in Fog-Cloud Computing Towards Balanced

Delay and Power Consumption,” IEEE Internet of Things Journal,
pp. 1–1, 2016. DOI: 10.1109/JIOT.2016.2565516.

[21] C. S. Nandyala and H.-K. Kim, “From Cloud to Fog and IoT-Based

Real-Time U-Healthcare Monitoring for Smart Homes and

Hospitals,” International Journal of Smart Home, vol. 10, no. 2, pp.

187–196, 2016. DOI:10.14257/ijsh.2016.10.2.18.

[22] R. Cao, Z. Tang, C. Liu, and B. Veeravalli, “A Scalable Multi-cloud

Storage Architecture for Cloud-Supported Medical Internet of

Things,” IEEE Internet of Things Journal, pp. 1–1, 2019. DOI:

10.1109/JIOT.2019.2946296.

[23] A. Malik and H. Om, “Cloud Computing and Internet of Things

Integration: Architecture, Applications, Issues, and Challenges,”

Sustainable Cloud and Energy Services, pp. 1–24, 2017. DOI:

10.1007/978-3-319-62238-5_1.

[24] "MQTT," 2014. [Online]. Available: http://mqtt.org/. [Accessed: 15-

Nov-2019].

[25] A. Banks and R. Gupta. "MQTT Version 3.1. 1." OASIS standard,

2014.

[26] “ISO - International Organization for Standardization,” ISO/IEC
20922:2016 - Information technology -- Message Queuing

Telemetry Transport (MQTT) v3.1.1, 08-Jun-2016. [Online].

Available:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466.

[Accessed: 15-Nov-2019].

[27] K. Fysarakis, I. Askoxylakis, O. Soultatos, I. Papaefstathiou, C.
Manifavas, and V. Katos, “Which IoT Protocol? Comparing

Standardized Approaches over a Common M2M Application,” 2016

IEEE Global Communications Conference (GLOBECOM), 2016.

DOI:10.1109/glocom.2016.7842383.

[28] M. A. Triawan, H. Hindersah, D. Yolanda, and F. Hadiatna,

“Internet of things using publish and subscribe method cloud-based

application to NFT-based hydroponic system,” 2016 6th

International Conference on System Engineering and Technology

(ICSET), 2016. DOI: 10.1109/ICSEngT.2016.7849631.
[29] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan,

“Performance evaluation of MQTT and CoAP via a common

middleware,” 2014 IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP), 2014. DOI: 10.1109/ISSNIP.2014.6827678.

[30] P. Sethi and S. R. Sarangi, “Internet of Things: Architectures,
Protocols, and Applications,” Journal of Electrical and Computer

Engineering, vol. 2017, pp. 1–25, 2017. DOI:

10.1155/2017/9324035

[31] K. Grgic, I. Speh, and I. Hedi, “A web-based IoT solution for

monitoring data using MQTT protocol,” 2016 International

Conference on Smart Systems and Technologies (SST), 2016. DOI:

10.1109/SST.2016.7765668.

[32] I. Al-Joboury and E. Al-Hemiary, “IoT-F2CDM-LB: IoT Based

Fog-to-Cloud and Data-in-Motion Architectures with Load

Balancing,” EAI Endorsed Transactions on Internet of Things, vol. 4,

no. 13, p. 155332, Nov. 2018. DOI:10.4108/eai.6-4-2018.155332.

[33] J. Zinke and B. Schnor, "The impact of weights on the performance

of Server Load Balancing systems," 2013 International Symposium

on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS), 2013.

[34] R. R. Adiputra, S. Hadiyoso, and Y. S. Hariyani, “Internet of Things:

Low Cost and Wearable SpO2 Device for Health Monitoring,”
International Journal of Electrical and Computer Engineering

(IJECE), vol. 8, no. 2, p. 939, Jan. 2018.

DOI:10.11591/ijece.v8i2.pp939-945.
[35] J. Tiso, Designing Cisco network service architectures (ARCH):

Foundation learning guide. Indianapolis, IN: Cisco Press, 2016.

[36] L. Hou, S. Zhao, X. Xiong, K. Zheng, P. Chatzimisios, M. S.

Hossain, and W. Xiang, “Internet of Things Cloud: Architecture and

Implementation,” IEEE Communications Magazine, vol. 54, no. 12,

pp. 32–39, 2016. DOI: 10.1109/MCOM.2016.1600398CM.

[37] Pulse sensor, https://pulsesensor.com/. [Accessed: 15-Nov-2019].

[38] Tsung, http://tsung.erlang-projects.org/. [Accessed: 15-Nov-2019].

[39] NodeMCU, http://nodemcu.com/index_en.html/. [Accessed: 15-
Nov-2019].

[40] G. K. Dey, M. M. Ahmed, and K. T. Ahmmed, “Performance

analysis and redistribution among RIPv2, EIGRP & OSPF Routing
Protocol,” 2015 International Conference on Computer and

Information Engineering (ICCIE), 2015. DOI:

10.1109/ccie.2015.7399308.
[41] Wireshark. https://www.wireshark.org/. [Accessed: 15-Nov-2019].

[42] M. Mamunur and P. Datta, “Performance Analysis of Vehicular Ad

Hoc Network (VANET) Considering Different Scenarios of a City,”

International Journal of Computer Applications, vol. 162, no. 10, pp.

1–7, 2017. DOI: 10.5120/ijca2017913329.

[43] K. Suresh and R. J. Kannan, “Review of Advancements in Multi-

tenant Framework in Cloud Computing,” Indonesian Journal of

Electrical Engineering and Computer Science, vol. 11, no. 3, p. 1102,

Jan. 2018. DOI: 10.11591/ijeecs.v11.i3.pp1102-1108

