
110

A Sleep-Awake Scheme Based on CoAP for Energy-Efficiency in

Internet of Things

Wenquan Jin #, DoHyeun Kim #

Computer Engineering Department, Jeju National University, South Korea

 E-mail: wenquan.jin@jejunu.ac.kr, kimdh@jejunu.ac.kr

Abstract—Internet Engineering Task Force (IETF) have developed Constrained Application Protocol (CoAP) to enable

communication between sensor or actuator nodes in constrained environments, such as small amount of memory, and low power.

IETF CoAP and HTTP are used to monitor or control environments in Internet of Things (IoT) and Machine-to-Machine (M2M). In

this paper, we present a sleep-awake scheme based on CoAP for energy efficiency in Internet of Things. This scheme supports to

increase energy efficiency of IoT nodes using CoAP protocol. We have slightly modified the IoT middleware to improve CoAP

protocol to conserve energy in the IoT nodes. Also, the IoT middleware includes some functionality of the CoRE Resource Directory

(RD) and the Message Queue (MQ) broker with IoT nodes to synchronize sleepy status.

Keywords— Sleeping scheme, RD, CoAP, IoT.

I. INTRODUCTION

Internet of Things is large network of connected devices

including various sensors and actuators to achieve desired

objective of an individual or organization. It is composed of

various components, communication technologies, data

storage facilities and decision support systems.

IETF CoRE (Constrained RESTful Environment) WG

(Working Group) had proposed CoAP for constrained

networks [1]. CoAP provides a request/response interaction

model between application endpoints using REST

architectural style based on UDP. A size of CoAP message

is small than HTTP and CoAP is more efficient than HTTP

[2, 3]. IETF CoRE WG begin the standard track from 2010

and it had been published RFC 7252 in 2014. For CoAP,

there are several implementations are available, and several

IoT or M2M platforms use CoAP as communication

protocol. IETF CoAP provides numerous potentially

beneficial features for implementing wireless sensor

networks with embed applications [4,5]. Therefore, CoAP

will become a part of the new dominant design for IoT

applications [6].

In this paper, we present a sleepy-awake scheme for

energy efficiency of IoT nodes using CoAP protocol. Sleepy

approaches are necessary for constrained devices. We have

designed and implemented a sleepy mechanism for

supporting a sleepy approach for IoT nodes. The proposed

network includes IoT node, IoT middleware and Web Client.

The proposed scheme uses HTTP and CoAP for

communication between each element in the network. For

this scheme we have used CoAP libraries to implement

communication that are not only used for sleepy mechanism

but also used for delivering data to the web client application.

Rest of this paper is structured as follows; Section 2

introduces proposed sleepy scheme and section 3 illustrates

the usage of the scheme for IoT nodes. Section 4 illustrates

experiment of the sleepy scheme using IoT nodes and

section 5 describes the performance. Finally, we conclude

our paper in section 5.

II. PROPOSED SLEEPY-AWAKE SCHEME

The CoAP is a protocol intended towards devices which

are constrained in terms of memory, processing and power

i.e. small low power sensors, switches and valves etc. The

CoAP allows such devices to interactively communicate

over the Internet. The CoAP is a specialized web transfer

protocol for constrained devices. It is expected that in CoAP

networks, there will be a certain portion of nodes that

temporarily suspend CoAP protocol communication to

conserve energy.

Sleepy feature is necessary for constrained environment.

CoAP nodes work on constrained environment, therefore,

direct discovery of nodes is not practical due to sleepy nodes.

There have been several IETF drafts for sleepy nodes in

constrained environments. Our implementation design is

based on the sleepy mechanism presented in [7].

CoRE RD is an entity which hosts descriptions of CoAP

nodes held on a server. The server should be based on some

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 1 (2017) NO 4

e-ISSN : 2549-9904

ISSN : 2549-9610

mailto:wenquan.jin@jejunu.ac.kr

111

power supply (not batteries), which can always allow

lookups for retrieving registered information [8]. In CoAP

based communication network, a CoAP client can search a

CoAP node from RD and access it. Before the searching

process, the CoAP node needs to register its information to

the RD [9].

An extension of the CoRE RD called MQ broker which is

published as a draft in IETF [9]. Functionalities for publish-

subscribe communication are incorporated using the broker

which enables to store and forward message from CoAP

nodes. A CoAP node can send a data to the MQ broker and

can switch into sleep mode. Then a CoAP client can request

to MQ broker for getting the data which is sent by the CoAP

node before sleep. The data is temporal, that can be updated

or removed.

Fig. 1 Functionality of RD and MQ in IoT Middleware for sleep mode

The IoT middleware is used for in constrained networks

for several reasons such as to improve performance and

sleeping device scheduling. In CoAP networks, there will be

a certain portion of devices that are "sleepy" and which may

occasionally go into a sleep mode and temporarily suspend

CoAP protocol communication. We present a mechanism for

looking up sleepy nodes through interaction with IoT

Middleware in the IoT. The functionality of RD and MQ are

incorporated as part of the IoT middleware as shown in

Figure 1.

IoT middleware includes RD functionality to manage

information of IoT node. RD supports HTTP service to Web

Client application for discovering and looking up

information of IoT node which are registered by IoT node

through CoAP service using RD. Functionality of MQ is

used for performs store-and-forward messaging [10]. MQ

enables IoT node publishes context data to the middleware

to be subscribed by web client application. In the same way,

web client application publishes a command to the IoT

middleware and forward to IoT node when the node is

available.

Models can explicitly explain processes and visualize a

flow in a view [11,12]. Business process model and notation

(BPMN) is a used for representing processes. BPMN

involves flowchart which is better than UML diagrams for

non-complex programs [13,14]. Figure 2 shows sleepy

scenario using business process model. The process begins

from web client application part. It sends message to RD to

get node’s data. RD check node’s sleep state by node ID and

RD returns sleep information to web client application. Web

client application gets node’s sleep delay data and

synchronize the sleep state information with IoT middleware.

When web client application knows node is awake, web

client application can get the contextual data of node.

Fig. 2 Business process model for sleepy scenario

Fig. 3 Sequence diagram for sleepy-awake

III. SLEEPY MODE FOR IOT NODE

The sleepy information is updated in middleware and IoT

node at the same time. Sleep state indicates whether the node

is currently in sleep mode or not. Sleep duration indicates

the maximum duration of time that the node stays in sleep

mode. There is notify process which includes sleepy mode.

112

We design the mechanism using functionalities of RD and

MQ for web client application to learn about sleepy state

information of IoT node. Synchronous process is used by

web client application to synchronize the sleep time of the

IoT node.

Figure 3 shows IoT node receives a PUT request from

middleware for change sleepy state. When web client

application requests for get node’s data, then IoT

middleware sends a respond message with sleep information.

Web client application gets node’s delay information from

IoT middleware to synchronize the sleep state information.

IV. EXPERIMENT AND RESULTS

Working of sleepy scheme is shown in Figure 4. Web

client application sends sleep command request to IoT node

through IoT middleware through HTTP protocol using node

ID, sleep_state and sleep_duration as parameters. IoT

middleware retrieve the IP address of IoT node via the node

ID, and forward the sleep properties to IoT node through

CoAP. IoT node invokes do_sleep() function for falling

asleep.

Fig. 4 Implementation of request command for sleep mode

We have used Java framework to implement IoT

middleware and C library to implement IoT node [15][16].

IoT node is implemented in Linux C compile environment

because of IoT node working in the constrained environment.

IoT middleware is implemented in java compile

environment. The IoT middleware is a web application

which support web link to be accessed by user such as web

client and HTTP client. In the service layer, our service

provider supports SOAP web service which uses HTTP

client to request the IoT middleware.

We implement the CoAP protocol in the proposed

environment, and verify the interoperability. Figure 5 shows

environment for testing CoAP client and CoAP server

program. The CoAP client was written by Java, so it was

executed in JRE environment. The CoAP server uses Linux

C library and can be executed where the Linux that GCC

compiler is exist.

The CoAP client slide uses Californium version which is

based on the Java language, and the CoAP server uses

Californium library which is based on the C language. The

Californium library is ETSI IoT CoAP protocol and it uses

“3-clause BSD” license [15]. The Libcoap protocol is

implemented by using Linux C library, and it uses “BSD”

license.

Fig. 5 Experiment environment for CoAP protocol

When the client sends a message to the server, the server

sends the response message. The CoAP protocol is based on

UDP protocol, and when the response message is not

reached to the server in the pre-defined time, it sends

message again. Repeat this again 5 times and if it is not

received response message, this means that the

communication is failed.

Fig. 6 Snapshot of CoAP Client execution

Fig. 7 Snapshot of CoAP server execution

We have developed testing applications for both client

and server side. Figure 6 and Figure 7 presents sample

snapshot of execution of client and server application

respectively. When the CoAP client sends request message

to the CoAP server via the CoAP protocol, the CoAP server

processes it and sends reply message back to the CoAP

client. These figures show exchange of request and response

messages. The value “CON” is the T (Type) value of the

CoAP protocol message format, and the “GET” is the

method type of the CoAP protocol, and the IETF defines 4

method types. MsgId (i.e. 10658) means ID of message, and

this value can be created automatically or developer can

define it. The “#Options: 1” means the number of message

attributes included in CoAP protocol message, and basically

it is “MsgId” attribute.

Figure 7 shows experiment screenshot of node emulator

in CoAP server. This program is executed with Console in

Linux environment, and receiving message from a CoAP

protocol node and collecting current temperature is shown

on Console screen.

113

Fig. 8 Context data record list in the sleep mode of IoT node

Figure 8 shows a context data record list when the IoT

node falls asleep after receiving a sleep command from IoT

middleware. IoT node received a CoAP message with a

URI-query specifying sleep duration is 15 seconds as shown

in Figure 7. In this period, the IoT node will stop unit’s

functions. The record list given in Figure 8 shows that in the

period from “02:33:12” to “02:33:41”, the IoT node had

slept 15 seconds and waked up.

V. PERFORMANCE EVALUATION

Using our test applications for the proposed IoT system,

we evaluated the performance of the message interaction for

sleepy schemes. In this experiment, when an IoT node wakes

up from sleep, then a web client application will get context

data of IoT node.

Fig. 9 Message transfer process for sleep-awake scheme

Figure 9 shows message transfer process for sleep scheme.

In the synchronous scheme for sleepy IoT node, the state

information of sleepy time is known by the web client

application. When the time of sleep is up in the web client

application, then it sends a request to the IoT middleware for

acquiring context data of IoT node. Then the IoT

middleware sends a CoAP request message to the IoT node

to get context data. Finally, IoT middleware responds the

context data to the web client application.

Figure 10 shows testing results of sleep scheme. This

screenshot shows the results of context data of IoT node and

time estimation for the process. The unit of time is

millisecond. From the result, the timestamp of the process is

26 ms.

Fig. 10 Result of context data and time estimation for sleep scheme

VI. CONCLUSION

IETF CoRE WG presented CoAP for constrained

environment, and there are several extensions for CoAP. In

this study, we have presented a sleepy scheduling scheme to

build on IoT middleware for energy conservation in IoT

elements. We applied CoAP and CoAP extensions for

interaction of these elements. IoT node is based on CoAP

protocol, which works in constrained environment using low

power and limited RAM and ROM. We designed and

implemented the IoT node to fit the requirement. IoT

middleware works with IoT node via CoAP in the

Constrained RESTful Environment. We proposed an

enhanced mechanism for management of sleepy nodes using

CoRE RD and CoAP MQ. This mechanism is tested with

IoT node and IoT middleware based on CoAP. In this paper,

we have only presented our design and initial working

implementation. In future, we will perform experiments to

extensively analyse our design and resultant energy savings.

ACKNOWLEDGMENT

This research was supported by Institute for Information

& communications Technology Promotion(IITP) grant

funded by the Korea government(MSIP) (2012-0-00265,

R0101-17-0129 , Development of high performance IoT

device and Open Platform with Intelligent Software) and this

research was supported by the MSIP(Ministry of Science,

ICT and Future Planning), Korea, under the

ITRC(Information Technology Research Center) support

program (IITP-2017-2014-0-00743) supervised by the

IITP(Institute for Information & communications

Technology Promotion)" Any correspondence related to this

paper should be addressed to DoHyeun Kim;

kimdh@jejunu.ac.kr.

REFERENCES

[1] Z. Shelby, B. Frank, D. Sturek, “Constrained Application Protocol

(CoAP)”, RFC 7252, June, 2014.

[2] C. Bormann, A. P. Castellani, Z. Shelby, CoAP: An Application
Protocol for Billions of Tiny Internet Nodes, IEEE Internet

Computing, Vol. 16, No. 2, pp 62-67, 2012.

[3] Tapio Leväa, Oleksiy Mazhelisb, Henna Suomia, "Comparing the
cost-efficiency of CoAP and HTTP in Web of Things applications",

Decision Support Systems, Vol. 63, pp. 23–38, July 2014.

[4] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, V. Dobrota,
"Evaluation of constrained application protocol for wireless sensor

networks", Proc. of 18th IEEE Workshop on Local & Metropolitan

Area Networks (LANMAN), 2011.

114

[5] Z. Shelby, "Embedded web services", IEEE Wireless

Communications, 17 (6), 2010.

[6] M.L. Tushman, J.P. Murmann, "Dominant designs, technology
cycles, and organizational outcomes", R. Garud, A. Kumaraswamy,

R.N. Langlois (Eds.), Managing in the Modular Age: Architectures,

Networks, and Organizations, Blackwell Publishers, Oxford, 2003.
[7] A. Rahman, "Enhanced Sleepy Node Support for CoAP", Internet-

Draft, draftrahman-core-sleepy-05, February 2014.

[8] Jin Wen-Quan, Kim Do-Hyeun, "Implementation and Experiment of
CoAP Protocol Based on IoT for Verification of Interoperability",

The Journal of the Institute of Webcasting, Internet and

Telecommunication, Vol. 14, Iss. 4, pp. 7-12, 2014
[9] Z. Shelby, M. Koster, C. Bormann, P. van der Stok, “CoRE Resource

Directory”, draft-ietf-coreresource- directory-05, October 16, 2015

[10] M. Koster, A. Keranen, J. Jimenez, "Message Queueing in the
Constrained Application Protocol (CoAP)", Internet-Draft, draft-

koster-core-coapmq-00, July 2014.

[11] Kinam Park, Heuiseok Lim, "A computational model explaining
language phenomena on Korean visual word recognition", Cognitive

Systems Research, Volume 27, Pages 11-24, March 2014.

[12] Chang, J-K., Seungteak Ryoo, and Heuiseok Lim, "Real-time vehicle

tracking mechanism with license plate recognition from road

images." The Journal of Supercomputing, 2013.
[13] Danial Hooshyar, Rodina Binti Ahmad, Moslem Yousefi, Moein

Fathi, Shi-Jinn Horng, Heuiseok Lim, "Applying an online game-

based formative assessment in a flowchart-based intelligent tutoring
system for improving problem-solving skills", Computers &

Education, Volume 94, Pages 18-36, March 2016.

[14] Danial Hooshyar, Rodina Binti Ahmad, Moslem Yousefi, Moein
Fathi, Shi-Jinn Horng, Heuiseok Lim, "Applying an online game-

based formative assessment in a flowchart-based intelligent tutoring

system for improving problem-solving skills", Computers &
Education, 2016.

[15] Californium (Cf) CoAP framework in Java,

http://people.inf.ethz.ch/mkovatsc/californium .php
[16] libcoap: C-Implementation of CoAP, http://libcoap.sourceforge.net/

