
58

Concerns-Based Reverse Engineering for Partial Software
Architecture Visualization

Hind Alamin M#, Hany H Ammar*
College of Computer Science and Information Technology, Sudan University of Science and Technology, SUST University, SUDAN

* Lane Computer Science and Electrical Engineering Depart, College of Engineering and Mineral Resources, West Virginia University, USA

 E-mail: hindalamin@sustech.edu, hindalamin@gmail.com, Hany.Ammar@mail.wvu.edu, ammar.hany@gmail.com

Abstract— Recently, reverse engineering (RE) is becoming one of the essential engineering trends for software evolution and

maintenance. RE is used to support the process of analyzing and recapturing the design information in legacy systems or complex

systems during the maintenance phase. The major problem stakeholders might face in understanding the architecture of existing

software systems is that the knowledge of software architecture information is difficult to obtain because of the size of the system, and

the existing architecture document often is missing or does not match the current implementation of the source code. Therefore, much

more effort and time are needed from multiple stakeholders such as developers, maintainers and architects for obtaining and re-

documenting and visualizing the architecture of a target system from its source code files. The current works is mainly focused on the

developer viewpoint. In this paper, we present a RE methodology for visualizing architectural information for multiple stakeholders

and viewpoints based on applying the RE process on specific parts of the source code. The process is driven by eliciting stakeholders’

concerns on specific architectural viewpoints to obtain and visualize architectural information related these concerns. Our

contributions are three fold: 1- The RE methodology is based on the IEEE 1471 standard for architectural description and supports

concerns of stakeholder including the end-user and maintainer; 2- It supports the visualization of a particular part of the target

system by providing a visual model of the architectural representation which highlights the main components needed to execute

specific functionality of the target system, 3- The methodology also uses architecture styles to organize the visual architecture

information. We illustrate the methodology using a case study of a legacy web application system.

Keywords— Reveres Engineering, Software Architecture visualization, Extracting Architectural Information, Visualizing

Architectural Information.

I. INTRODUCTION

Nowadays, reverse engineering (RE) is becoming one of
essential engineering trends for software evolution and
maintenance. Generally; RE is defined as the way of
analysing an existing software system to identify its current
components and the dependencies between these
components to recover design information, and create new
forms of system representations [1]-[4]. The core of RE
consists of extracting information from the available
software artifacts (such as: source code) and representing it
into visual models to be understandable by stakeholders [3],
[5]. The main objectives of RE are focused on generating
alternative views of system's architecture, recapture design
information, re-documentation of software system, facilitate
software system’s reuse, and represent software systems at
higher level of abstractions (by putting the system’s users in
the maintenance loop so that users can give feedback on the
information related the target system). Furthermore; RE is
used to support recapturing the design information for

restructuring the architecture into more maintainable
architecture [3], [5]. Hence, most of the companies rely on
reengineering the legacy systems which are important for
their business process and keep them in operations [3].

Moreover, software documentation is essential for the
system’s stakeholders (such as: developers, end-users, testers,
maintainers, architects, system administrators, etc.) to decide
on activities in order to evolve and maintain the software
system. For example, “source code” is considered as the
detailed documentation for the software system
implementation, and in most cases, it is the only source of
information that up to date and available for legacy software
systems. Accordingly; IEEE_1219 standards recommend the
RE as a key supporting technology to deal with source code
as the “reliable representation” of software systems [3], [5].

Recovering and documenting software architectures
(either fully or partially) has been an area of active research
where programmers, architects, maintainers, testers and
software engineers spend a lot of time using their expertise
in resolving such problems of mapping existing source code

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 4 (2020) NO 2

e-ISSN : 2549-9904

ISSN : 2549-9610

59

of a target system into architecture components and for
supporting the understand-ability and maintainability of
software systems.

Previous research made great progress to overcome the
problems of documenting and recovering software
architectures to reflect the system’s changes at the code level.
However, to deal with complex legacy systems, there is a
significant need to develop a new RE approaches or methods
for documenting the only part of the architecture in order to
simplify and visualize the available information of complex
architectures. This should be based on stakeholders concerns
and their decisions about the architecture of the target
system. Hence, it's important to determine what to look for
and focus in obtaining specific information on the
architecture of the implemented software system.

This paper represents RE methodology for extracting a
particular architectural information based on applying RE
process on specific parts of the implemented source code to
support the understand-ability and maintainability process
for particular parts of the software system.
The rest of the paper is organized as follows: Section 2;
presents the proposed RE methodology and the detailed
design of RE methodology’s phases. Section 3; describes
how to apply RE methodology’s phases to a case study.
Section 4; compares the proposed methodology with related
works. Finally, Section 5 concludes with the main
contributions and highlights the future research

II. THE PROPOSED REVERSE ENGINEERING

METHODOLOGY

This section presents an overview of the proposed RE
methodology. We discuss the principles of proposed
methodology, and describe the detailed design of the main
phases of the methodology.

A. Overview of the Proposed RE Methodology

The main goal of proposed methodology is to define a RE
process for extracting particular architectural information
based on stakeholder’s viewpoints and concerns related to
the target software system.

The RE methodology is based on three main concepts
defined in the IEEE1471 standard for architectural
description such as (stakeholder, viewpoint and concern).
The main idea is to elicit stakeholders' concern on specific
architectural viewpoint of the target software system. Then
we apply the RE process to extract and document a
particular architectural information about the target software
system driven by the elicited concern.

The extraction process of RE methodology is driven by
addressing the specific concerns of the stakeholder(s) for
extracting only partial architectural information. Therefore,
it’s doesn’t address the RE of the whole architecture of
target software system. The general overview of RE
methodology is shown in Figure 1 as follow. The inputs are
the source code and documentation as well as the
stakeholders concerns regarding the software system. The
output is a model of a particular architectural information
based on the specific concerns.

Fig. 1 Overview of RE Methodology

B. RE Methodology Principles

The principles of RE methodology are summarized as:

 RE methodology is based on three concepts defined
in the IEEE1471 standard for architectural
description as shown in Figure 2. These concepts are
described as follows [6]-[8]:

 Stakeholder is a person, group or entity with an
interest in the realization of the architecture.

 Concern related to specific functional or non-
functional requirements of the software system is
defined as: a concern to a requirement, an
objective, an intention, or aspiration which a
stakeholder has for the software system.

 Viewpoint defines the perspective from which the
view is taken; and each viewpoint covers a set of
concerns related to one or more stakeholder(s).

Fig.2 IEEE 1471 Conceptual Framework. Adapted from [8, p15]

 Our RE methodology extends additional
stakeholders such as: end-user, maintainer, analyst,
architect and tester.

 The Methodology supports the understand-ability
and maintainability of legacy software systems using
partial architecture visualization

C. RE Methodology Phases

The Methodology consists of four phases described as
follows:

 Phase(1): Define stakeholders concerns based on
one of the architectural viewpoints.

60

 Phase(2): Elicit specific stakeholder’s concern.

 Phase(3): Extract related requirement information
based on the elicited concern.

 Phase(4): Apply the RE process for extracting the
particular architectural information driven by the
extracted requirement information.

Fig.3 The RE Methodology’s Phases

As shown in Figure3; the phases of RE methodology is
described using a process modelling language. The
following paragraphs elaborate on the detailed design of
each phase:

1) Define stakeholders concerns based on architectural

viewpoint:

This phase is based on the definition of “stakeholders”
and “concerns” in IEEE 1471 standard for architectural
description. We follow the classification of architectural
viewpoints that are presented in literature. The activities in
this phase includes the following two steps:

 Select a viewpoint from a given catalog which

describes specific architectural viewpoint for the target

software system.

 Categorize common stakeholders related to the

selected viewpoint.

1.1) Select a viewpoint from a given catalog:

The definitions of stakeholders’ concerns are based on a
set of architectural viewpoints about software system.
These viewpoints have been considered by several
researchers form different perspectives [6], [9], [10-18].
We choose the classification of viewpoints catalog that
were presented by Nick Rozanski and Eoin Wood in 2005
[10], [17]. They developed a set of core viewpoints which
are based on extending the well-known “4+1” standard
view model of software architectures (Logical, Process,
Physical, and Development) that was defined by Philippe
Kruchten in 1995. The viewpoint catalog includes six core
viewpoints for information systems architecture, namely:
Functional viewpoint, Information viewpoint,
Concurrency viewpoint, Development viewpoint,
Deployment viewpoint, and Operational viewpoint (see
Figure 4). Each one of these viewpoint defines a set of
concerns related to one or more stakeholder(s).

Fig.4 The Viewpoints Catalog [10, 17]

Summarized the viewpoints catalog in Figure 4; the first
three viewpoints: Functional, Information and
Concurrency characterize the fundamental organization of
the software system. The development viewpoint exists to
support the system’s construction. The deployment and
operational viewpoints characterize the system’s runtime
environment [10], [17]. The last three viewpoints mainly
covers the concerns of the developers and maintainers
stakeholders.

The methodology we present in this paper is focused on
the “Functional viewpoint” from the catalog of Nick et al.
The justification for selecting this “Functional viewpoint”
is that it is applicable to all types of software systems; and
reflects the essential architectural information for most of
the stakeholders (such as: maintainer, end-user, developer,
system administrator, tester, acquirer, assessor and
communicator).

Furthermore, the functional viewpoint includes a set of
general stakeholders’ concerns which reflect and realize
the essential and basic architectural information about the
software system. This information include the internal
structure which determines the main elements of software
system, the responsibilities of each element and primary
interactions between elements, the functional capabilities
that defines what the specific action(s) that system should
take in a given situation, and the functional design
philosophy that reflects how the system will work step by
step from the user’s perspective as represented in Table 1.

TABLE 1
FUNCTIONAL VIEWPOINT CATALOG [10], [17]

Functional viewpoint

Description Describes the system’s runtime functional elements
and their responsibilities, interfaces, and primary
interactions between these elements.

General

Concerns

 Internal structure
 Functional capabilities
 Functional design philosophy
 The external interfaces

Related

Stakeholders
End-User, Maintainer, Developer, Tester, Acquirer,
System Administrator, Assessor and Communicator.

1.2) Categorize common stakeholders concerns related to

the selected viewpoint:

This step includes the categorization of common
stakeholders and their architectural concerns based on
selected viewpoint catalog. The main idea is to address the
following points: who are the stakeholders of target
software system; and which concerns do they have
according to the selected viewpoint.

61

Table 2 represents the categorization of stakeholder’s and
their architectural concerns based on selected functional
viewpoint catalog.

TABLE 2
FUNCTIONAL VIEWPOINT: STAKEHOLDERS AND CONCERNS [10], [17]

2) Elicit specific stakeholder concern:

In “Phase(2)” we define an elicitation process to clearly
describe a specific concern from the general architectural
concerns defined in Phase(1).

The specific concern of the stakeholder is defined as a
specific question that can be used to query the functional
requirements document of the target software system. It can
for example be used to select related use cases defined in the
use case diagram of the requirements model. Accordingly,
each elicited concern should have a question format and has
two elements as follows:

 CIDn: refers to concern ID (where n is an integer
number), which written in dotted diamond box.

 Question: refers to elicited concern from the
functional scenario of a target software system, and
written in dotted rectangular box.

As shown in Figure 5; the association between the
functional requirement (FR) and elicited concern appears
with dotted lines in the use case diagram of the target system.
Moreover, it’s possible to have multiple elicited concerns for
one FR which are numbered as CID1, CID2,.. ,CIDn

Fig.5 Elicitation of Specific Stakeholder’s Concern(s)

3) Extract related requirement information based on

elicited stakeholder’s concern

In “Phase(3)” which describes how to extract the related
requirement information related to the elicited functional
concern produced in Phase(2). The stakeholder’s functional
concern should be focused on the functionality offered by
the target software system.

To support the activities of this phase, we developed a
prototype tool which has a graphical user interface (GUI).

The tool allows stakeholders to enter a specific concern in
form of a “query”. The specific concern will be elicited from
the functional requirements repository assumed to be
available for the target software system.

The tool extracts a set of related requirement information
based on elicited concern, and creates a trace link between
elicited concern and its relevant information. Figure 6 shows
screen shots described as follows:

3.1) Extraction of related requirement information:

The extraction process starts by accessing the
requirement repository and filtering all relevant
information related the specified concern. Furthermore,
the extraction process is achieved using the Full-Text
indexing and searching mode technique as described in
[19, 20].

The Full-Text indexing and searching technique allows to
implement keyword based filtering and sorting through
several searches mode. The searching techniques is
achieved using natural language searching mode which
interprets the search for specific functional concern (in
form of user query); then performs filtering process and
ranking of the relevant information related to the
specified concern. The main results are displayed in a
dropdown menu and sorted into three categories:

 High weight: appears in green color and represents
highly relevant requirement information related the
specified functional concern,

 Medium weight: appears in yellow color and
represents the medium relevance requirement
information related the specified functional concern,

 Low weight: represents low relevance values of
requirement information, and appears in red color.

3.2) Traceability among specific concern and its related

requirement information:

The traceability process is performed after the extraction
process. The main idea is to create a trace link among the
extracted concerns and its relevant information using the
tool as shown in Figure 6

Fig.6 Tracing Specific Concern to its Related Requirement

Information

62

4) RE for extracting particular architectural information

The final phase, “Phase(4)” is based on using the
extracted requirement information produced from the
previous. This phase includes two key activities as follows:

 RE process for extracting specific source code files,

 Representation of the particular architectural

information based on the extracted code files.

4.1) RE process for extracting specific source code files:

This RE process is achieved by applying a code analyser
process which performs static analysis on source code
files to determine and trace which set of code files are
used to implement specific functionality reflected by the
extracted requirement information in Phase(3). The code
analyzer process includes three key steps as shown in
Figure 7. We describe these steps in the following
paragraphs:

 Select the starting point for tracking the execution of
a specific functionality represented by extracted
requirement information. For examples: page file,
class, method or function from code elements.
Notably, the selection of a starting point can be
performed by using references from existing
documents such as the user manual, or the software
testing document.

 Track the execution of selected starting code element
and analyze the code extraction contents and gather
all related code elements.

 Extract related code elements in form of main code
element and its related elements. The relation
between code elements can be describes as:

 require relation is used to describe the
relations between code files and show the
dependences of these files within the software
system, or

 contain relation is used to describe that code
file contains a set of functions that are used to
execute specific functionality of the system, or

 Call relation is used to describe the relation
between code elements and how different
functions interact with each other.

As summarized; the whole process of code analyzer is
achieved by using a static analyser tool called doxygen
tool [21]. The doxygen tool is used to extract code
structure from the existing source code files, and visualize
the relations between various code elements according the
type of source code of target software system in the form
of function call graphs, or dependency graphs, or
inheritance diagrams, or collaboration diagrams, which
are all generated automatically by the tool [21].

4.2) Representation of the particular architectural

information:

Generally; the representation process includes two key
steps; mapping the extracted code elements into a
component model; and visualizing the architectural
information using architecture styles. The following
paragraphs describe the details of these steps:

Fig.7 Code Analyzer Process

 Mapping the extracted code elements into a

component architecture model: This step involves the
process of organizing the extracted code elements
into a component model to make an explicit mapping
between software architecture and the code elements
of the target system.
It is important to note that this process assumes that
the term “component” can be associated with a code
element such as a code file, a webpage file, a class, a
class method, a function, or either as a group of
related methods or functions which are used
frequently together in the execution of specific
system’s functionality.
For example, suppose the given code element is a
webpage source file called page_Layout.php, this
webpage file can be mapped into a “Page Layout”
component which contains the set of functions or
methods that are used to execute specific system’s
functionality as in the following example shown in
Figure 8.

Fig.8 Example of Mapping Code’s Element into Component

 Visualizing architectural information using

architecture styles: The whole purpose of this
process is to create a logical model, so that the
architectural information is visualized and
represented in the form of logical component model
which helps the stakeholders to gain insight of the
architecture information related to their functional
concerns about a target system.

The visualization process starts by selecting the
structure of the architecture which is mainly based on
the application’s type as introduced in [20] called
archetypes. The Microsoft guide for application
architecture defines these archetypes as shown in
Table 4 [22].

The application archetypes includes the architecture’s
structure for common types of applications such as
web applications, rich client applications, rich

63

internet applications, service applications and mobile
applications as summarized in Table 4. However,
beside these archetypes, the Microsoft’s guide also
contains details of some specialized application types
such as hosted and cloud services, and office business
applications.

TABLE 4
 APPLICATION ARCHETYPES SUMMARY [22, P. 226]

The architecture of each of the archetype application
can be defined using architecture styles. For example,
the guide in [22] describes a layered architecture style
for web applications. The visualization process we
adopt is performed using these architectural styles.
This is based, for example, on grouping related
components in web applications as a three-layered
architecture which consists of a presentation layer,
business layer and data layer as shown in Figure 15.
Each layer should include specific components
described as follows:

 Presentation Layer: responsible for managing
user interaction with software system, and
generally consists of components that provide a
common bridge into the core business logic
that encapsulated in the business layer.

 Business Layer: which implements the core
functionality of software system, and
encapsulates the relevant business logic. It
generally consists of components, some of
which may expose service interfaces that other
callers can use.

 Data Access Layer: provides access to data
hosted within the system, and data exposed by
other networked systems; perhaps accessed
through services.

To summarize; Phase (4) includes two key steps. The
first step deals with organizing the extracted code
elements into a component model to make an explicit
mapping between the system’s architecture and code
elements. The second step deals with using
archetypes and architecture styles to visualize the
architecture model. We give the example of a layered
architectural style for web applications. The visual
model represents the extraction of the partial
architectural information in the form of a logical

model. This architectural information helps
stakeholders to answer their architectural concerns
about a target system. The next section describes how
to apply the methodology phases to a practical case
study.

III. APPLY RE METHODOLOGY TO A CASE STUDY

The following sections describe how to implement the RE
methodology phases using a legacy web application as a
practical case study. The section starts by giving an
overview of the selected software system, and describes the
main reasons for selecting this system. Then we describe the
details of applying each phase of the methodology to the
case study.

A. Selecting Software System for a Case Study

The case study selected is a web application system
called Timetable Management System (TMS). TMS was
developed by the Computer Center at Sudan University of
Science and Technology (SUST) in 2008.

TMS is a Web-based open source system which was built for
Sudanese Universities using MySQL database and PHP web
page language with Arabic interface; and it provides high
flexible features for managing and controlling the scheduling
of lectures’ times for students at Sudanese universities.
Moreover; TMS is flexible to accept changes that occur in
schedules for all colleges at the university during the
academic year without an overlap in specified slot times
between these colleges.
We chose this system for the following reasons. TMS
software is a diverse software implemented as a combination
of both front-end PHP, JavaScript and HTML code plus a
back-end MySQL database. It is an example of an
application with multiple components implemented with
different technologies. TMS is considered to be a legacy
system implemented with more than 10 years old
technologies since 2008. The documentation of TMS’s
architecture is missing, and the system documentation needs
to reflect its current architectural representation in order to
be reengineered with new technologies. Recovering the
particular architectural information of the system is essential
to support the system’s understand-ability and
maintainability.
Table 5 represents the general description about the TMS’s
source code contents.

TABLE 5
TMS SOURCE CODE OVERVIEW

System Name Timetable Management System(TMS)

Description

The core of source code is mainly PHP
webpage source files (written with
PHP procedural function code style,
and its non-object oriented code style).

PHP Source Files 110

Total LOC 30364
Number of

Functions Code
148

B. Applying RE Methodology Phases to the Case Study

The following paragraphs elaborate on the details of
applying each phase of RE methodology:

64

1) Define a set of Stakeholders Concerns: we define a

set of stakeholders’ concerns base on the “Functional

viewpoint” of the TMS system. The primary TMS’s
stakeholders are:

 End-User: who defines the system’s functionality
and ultimately make use of it. TMS has three end-
users (College Admin, Teachers, and Students).

 Maintainer: who manages the reengineering and
improvements of the system.

2) Elicit a specific Stakeholders Concern: The
elicitation process is focused on a selecting a particular
functional concern related to a use-case or a major
functionality offered by the system to different type of
users. The main idea is to elicit a specific concern such as
“CID1” shows in Figure 9 bellow.

Fig.9 Elicit a Specific Stakeholder Functional Concern

3) Extract related requirements information based on

the elicited stakeholder’s concern: TMS has 34
functional requirements; this phase assumes that all of
TMS’s functional requirements are already existed in a
“requirement repository”. The extraction process starts
by accessing the requirement repository and filtering all
of relevant information based on the elicited concern.
Then create a trace link between its relevant information.
The phase is achieved by using the tool as described in
section 3.1 and section 3.2.

Using the tool we obtain the results shown in Figure10.
The results of the search shows ten requirements
information displayed in a dropdown menu and sorted by
ranking using three categories as follow: High weight(2)
appears in green color, Medium weight(7) appears in
yellow color, and Low weight(1) appears in red color.

Fig.10 Extraction of Related Requirements Information

Additionally, the creation of a trace link is performed in
order to link the elicited concern with its relevant
information produced from the extraction process as
shown in Figure 11.

Fig.11 Traceability among specific Concerns and their related

Requirement Information.

4) Extracting architectural information: This final
phase is achieved by applying the RE process at code
level to perform following key steps:

4.1) Extracting specific source code files:

The code extraction process is performed by using a
static code analyzer as described in section 4.1. Using the
existing TMS source code file, we determine which set of
source code files are used to implement the specific
functionality of the system specified in the previous steps.
Notably, the selection of a starting point for the
extraction process is performed by returning to TMS’s
user manual in order to track the starting point for
“TMS_Req2.20” execution. The main output of this
process is to extract the call graph to obtain and visualize
the dependencies between the function elements which
are used to execute specific functionality in the system as
described in Figure12 and Figure13.

Fig.12 Applying Code Analyzer Process

Fig.13 Extracted Call Graph for Executing “TMS_Req2.20”
Functionality

65

4.2) Representation and Visualization of architectural

information:

This process includes two steps: The first step deals with
mapping the extracted code elements into architectural
components. The selected code elements in Figure 14
(webpages and functions) are mapped into thirteen

components architecture. The second step is visualizing
and representing particular architectural information
using a web application layered architecture style.

The selection of the architecture type is based on Web
Application Archetype which is applicable with the TMS
system. The core of the Web application is the server-
side logic which is visualized in a three-layer architecture.

Figure 15 shows the main components in each layer that
are used to describe and represent “TMS_Req2.20”
functionality as following:

 Presentation layer includes three components such
as (TMS Main Menu, Reporting Form and Page
Layout component). These components are
responsible for managing the end-user interaction
with TMS system.

 Business layer includes nine components which
implement the core functionality of TMS system.
The first four components such as (Preparation of
Teacher Report, College Timeslots, Report Detail
and DeptBackground Theme component). These
Components are concerned with the retrieval,
processing, transformation, and management of
TMS’s data; business rules and policies. The others
five components called “business entities” which
encapsulate the business logic and data necessary to
present the real world elements within TMS system,
such as (Academic Class Group, Lecture Room,
Teacher, Subject and Department).

 Data access layer consists of the database

connection component which provides access to the
data hosted within TMS system

Fig.14 Mapping Extracted Code Elements into Components

Architecture

Fig. 15 Visualizing Particular Architectural Information using Layered
Architecture Model

To summarized, the layered architecture model is used to
visualize and represent the extraction of particular
architectural information into a graphical model for
stakeholders which helps to answer their architectural
concerns about specific functionality of the TMS system.
Moreover, this architectural model provides an abstract level
of architectural representation for stakeholders which
highlights which set of components are needed to execute
specific functionality of the system. This is shown here as
the functionality of the mechanism for managing the
scheduling of Teachers lectures as shown in Figure 16.

Fig.16 Representation of Particular Architectural Information Based on

Stakeholder’s Functional Concern

IV. COMPERSION WITH RELATED WORKS

RE has become one of the major engineering trends for
software evolution. The core of RE consists of extracting
information from the available software artifacts such as
source code and translating it into abstract representations to
be understandable by the stakeholders [2],[3],[5].
Accordingly; C.Stringfellow et al. discussed that reverse

66

architecting is a specific type of reverse engineering, and
stated that the RE process should consist of three phases
starting with an extraction phase where we extract
information from the source code and document it in
documentation, and documented system history. The process
also include an abstraction phase which abstracts the
extracted information based on the objectives of RE activity,
then elicits the extracted information into a manageable
amount of information. And finally a presentation phase that
represents the abstracted data in a way suitable for the
stakeholders [23].

Software architecture consists of the description of
components and their relationships and interactions, both
statically and behaviourally as described in [6],[15],[23],[24].
Chikofsky et al. discussed that the RE process helps to
generate the documentation to recover the design
information of the system by analyzing the software to
identify the components and the interrelationships between
these components, and to create a representations of the
software system [2].

Previous research made great strides to overcome the
problem of documenting and recovering the software
architecture to reflect the system’s changes. Therefore,
several approaches, methods, frameworks and RE
methodologies have been proposed form different
perspectives [4-6],[15],[22-37]. The most important of these
proposed approaches were based on the concept of
architectural knowledge [24],[31]. They promote the
interactions between the stakeholders to improve the
architecture of the software system.

Moreover; some of the recent approaches and techniques
considered the perspective of getting the executable
architecture from existing source code of software system as
in [26],[34],[35]. These techniques considered every line of
code for extracting the architecture of a target system.
However, these extracted architecture were reflected every
functionality exists in the original source code. For example;
R.Arshad et al. proposed a RE model called (X-MAN) for
extracting executable architecture in form of component
model based on object oriented source code [34]. The
executable architecture contains structural and behavioural
aspects of software system in analyzed manner, and the
extracted components can be used to support the re-usability
of component and integrated them with other systems as
described in [26],[34].

For further information; we presented a survey paper
indicated in [4]. This survey paper reflects the current state
of art in documenting and recovering software architectures
using RE techniques. We highlighted and compared set of
existing RE methods and approaches based on their findings
and limitations. However, the main observation indicates
that most of these existing methods and approaches are
mainly focused on the developer viewpoint as the main
stakeholder; and based to reflect the whole architecture of
software system [4]. The recent approaches and methods
discussed the need for alternative solutions to extend
additional stakeholders. The solutions should focus to
communicate with the stored architectural information by
applying the scenario based documentation through
stakeholders’ scenarios and managing the architecture’s

documentation of software system. However; these issues
should simplify and classify the architectural information
based on identifying stakeholders’ concerns and viewpoints
about the target system, and visualize the architectural
information in a proper level of abstractions based on these
stakeholders’ concerns.

In this paper we present a RE methodology for visualizing
architectural information for multiple stakeholders and
viewpoints based on applying the RE on specific parts of the
source code. The process is driven by eliciting stakeholders’
concerns on specific architectural viewpoints to obtain and
visualize architectural information related these concerns.

The main idea of the methodology integrates the RE
technology and the representation of software architectural
information. The extraction process of RE methodology is
driven by addressing the specific concern by stakeholder(s)
for extracting only partial architectural information.
Therefore, it’s doesn’t address RE of the whole architecture
of a target system. Moreover; the representation process
includes two key steps; mapping the extracted code elements
into a component model; and visualizing the architectural
information using the architecture styles. This visualized
architectural information indicates the architecture for
particular part of software system which support the
understand-ability and maintainability process for legacy
software system.

Respecting and comparing with some of the related works as
summarized in Table 6; our main contributions are three fold:
(1) The RE methodology is based on the IEEE 1471
standard for architectural description and supports concerns
of stakeholder including end-user and maintainer; (2)
RE methodology supports the visualization of a particular
part of the target system by providing a visual model of the
architectural representation which highlights the main
components needed to execute specific functionality of the
target system, and (3) The methodology uses architecture
styles to organize the visual architecture information. We
illustrate the methodology using a case study of a legacy
web application system

As a result of these contributions, the visualization of a
particular part of the target system highlights the main
components needed to execute specific functionality which
can be used to support the understand-ability and
maintainability of the legacy software system (by putting the
stakeholder in the maintenance loop; so that stakeholder can
give feedback on the information related the target system).

V. CONCLUSION AND FUTURE WORK

The main contributions drawn from the proposed RE
Methodology are: firstly; a new RE Methodology follows
IEEE 1471 standard of architectural description and support
concerns of stakeholder including end-user and maintainer.
Secondly; GUI prototype tool to support the steps of
Methodology. It supports the visualization of a particular
part of the target system by providing a visual model of the
architectural representation which highlights the main
components needed to execute specific functionality of the
target system. Finally; the verification of the methodology
using legacy web application system.

67

TABLE 6
SUMMARIZATION OF SOME RELATED APPROACHES AND METHODOLOGIES

Further information; the extraction of architectural
representation helps stakeholders especially (maintainer,
end-user, architect, tester and developer) for obtaining the as
built architecture from its implemented source code
elements, and supporting the understand-ability and
maintainability phase for the target system.

For example; the architectural representation can be used by
the maintainer to support the understand-ability for
particular part of the system; by tracing the related
requirement information through its implemented code
elements and highlighted which components were needed to
represent specific functionality of the target system as
described in Figure 16.

Moreover; in case of improving or re-engineering the legacy
software system into new technology such as (object
oriented system or cloud based application system); the
architectural representation helps the maintainer to identify
which set of components that implement the core
functionality of legacy system, and encapsulate the relevant
business logic, or either to decide how to manage and
migrate the executable components into cloud based
environment.

Additionality, the extracted architectural information can be
used by the end-user to support the understand-ability for
particular part of the system by providing a proper level of
architectural diagram that highlighted which components are
needed to describe specific functionality. Actually, this is
very important by putting the end-user in the maintenance
loop so that end-user can give feedback on the information
related the target system, or either to determine and decide
in case of re-engineering specific functionality of legacy
software system through adding new features for the target
system.

The main recommendations for the Future work are
highlighted as follow: there is a need to extend RE
methodology to support additional architectural viewpoint
beside the “Functional viewpoint” based on a given
classification of viewpoints catalog (such as: the information
viewpoint, the deployment viewpoint, and the operational
viewpoint). The development of automated tool is needed to
support the whole phases of RE methodology, and apply RE
methodology in different application domains such as: the
robotics systems and smart object systems to support the
understand-ability and maintainability process for particular
parts of these systems.

VI. ACKNOWLEDGMENT

This research work was funded in part by Qatar National
Research Fund (QNRF) under the National Priorities
Research Program (NPRP) Grant No.: 7 - 662 - 2 - 247

REFERENCES
[1] [1] M. Garg and M. K. Jindal, "Reverse Engineering Roadmap to

Effective Software Design," International Journal of Recent Trands
in Engineering, vol. 1, no. 2, May. 2009.

[2] [2] E. J. Chikofsky and H. C. James, "Reverse Engineering and
Design Recovery: A Taxonomy," IEEE Software, vol. 7, no. 1, 13-
17 Jan.1990.

Author

(year)

General

Description

Documenting

Architecture

Whole/Particular

Addressing

stakeholder

concern

Organizing

Extracted

information

K
u

m
a
r

(2
0

1
3

)

RE methodology
for understanding
software artifacts.

Whole
Architecture

Developer

concern
UML models (state
diagram and
communication
diagram).

H
u

g
o

 e
t

a
l.

(2
0
1

4
)

Framework for
understanding the
contents of legacy
systems using
model driven RE.

Whole
Architecture

Developer

concern
By three layers and
the components of
each layer are based
on the nature of
legacy system
technologies.

C
h

e
et

 a
l.

(2
0
1

1
)

An approach for
collecting the
architectural
design decisions
(ADDs)

Whole
Architecture

Developer

and

architect

concern

Using triple view
model framework
(TVM) which
includes three
different views for
describing the
notation of ADDs.

C
h

e
et

 a
l.

(2
0
1

2
)

An approach for
managing the
documentation
and evolution of
the architectural
design decisions

Whole
Architecture

Developer

and

architect

concern

TVM framework
for specifying its
views through end-
user scenario(s).

C
h

e

 (
2
0

1
3

)

Methodology for
documenting and
evolving the
architectural
design decisions

Whole
Architecture

Developer

and

architect

concern

UML metamodel
for TVM
framework, each
view of TVM
specified by classes
and a set of
attributes for
describing ADDs
information.

R
iv

a
 e

t
a

l.

(2
0
0

2
)

Approach for
generating the
architectural
documentation

Whole
Architecture

Developer

concern
Using XML
notation for
representing the
architectural
documentation.

C
.M

ei
ru

(2
0

1
3

)

Approach for
documenting and
evolving
architectural
design decisions

Whole
Architecture

Developer

and

architect

concern

Using textual
format for
representing the
architectural design
decisions.

P
a

n
a
s

et
 a

l.

(2
0

1
3

)

RE approach for
unified recovery
architecture

Whole
Architecture

Developer

and

architect

concern

Unified recovery
model for
documenting the
architecture of
software.

A
rs

h
a

d
 e

t
a

l.

(2
0
1

7
)

RE model for
extracting the
architecture of
object oriented
source code.

Whole/
Particular
Architecture

Developer

concern

Component model
for representing the
architecture.

S
ta

rk
e

 e
t

a
l.

 (
2
0

1
7

)

Arc24 Template
for documentation
of software and
system
architecture

Whole
Architecture

Developer

and

architect

concern

Textual document
includes several
sections: underlying
business goals,
essential features
and functional
requirements for
the system, quality
goals, the relevant
stakeholders and
their expectations.

M
a

ra
s

et
 a

l.

 (
2
0

0
9

)

PHPModeler tool
for legacy PHP
Web applications

Whole
Architecture

Developer

concern

Static UML
diagrams (such as:
dependency models
for representing
resources of the
current page, its
functions and
dependencies).

R
a

za
v
iz

a
d

eh

et
 a

l.
 (

2
0

0
9

)

Framework for
extracting the
architectural
views from
object-oriented
source code.

Whole
Architecture

Developer

concern

Conceptual model
for representing the
architectures’
viewpoints.

68

[3] [3] L. H. Rosenberg and E. H. Lawrence, "Software re-engineering,"
Software Assurance Technology Center, 1996. [Online]. Available:
http://www.scribd.com/doc/168304435/Software-Re-Engineering1.

[4] [4] H. Alamin M. and H. H Ammar, "Reverse Engineering for
Documenting Software Architectures, a Literature Review,"
International Journal of Computer Applications Technology and
Research, vol. 3, no. 12, pp. 785 - 790, Dec 2014.

[5] [5] M. Harman, W. B. Langdon, and W. Weimer, "Genetic
Programming for Reverse Engineering," in Working Conference on
Reverse Engineering (WCRE'13), Koblenz, Germany, 2013.

[6] [6] P. Clements, F. Bachmann, L. Bass and D. Ga, "Prologue:
Software Architectures and Documentation," 2010. [Online].
[Accessed 26 April 2014].

[7] [7] R.Hilliard, D. Emery, M. Maier, "All About IEEE Std 1471,"
2007. [Online]. Available:
http://www.csee.wvu.edu/~ammar/CU/swarch/lectureslides/slidessta
ndards/all-about-ieee-1471.pdf.

[8] [8] Institute of Electrical and Electronics Engineers, "IEEE
Recommended Practice for Architectural Description of Software
Intensive Systems," 2000. [Online]. Available:
http://cabibbo.dia.uniroma3.it/ids/altrui/ieee1471.pdf. [Accessed 9
July 2014].

[9] [9] P. Kruchten, "Architectural Blueprints: The “4+1” View Model
of Software Architecture," IEEE Software, vol. 6, no. 12, p. 42–50,
1995.

[10] [10] N. Rozanski and E. Woods, Software Systems Architecture:
Working with Stakeholders Using Viewpoints and Perspectives, 2nd
ed., Addison Wesley, 2005

[11] [11] N. Rozanski and E. Woods, "Applying viewpoints and views to
software architecture," 2011. [Online]. Available:
http://www.viewpointsandperspectives.info/vpandp
/wpcontent/themes/secondedition/doc/VPandV_WhitePaper.pdf.
[Accessed 14 June 2015].

[12] [12] M. Nicholas, "A survey of Software Architecture Viewpoint
Models," in In Proceedings of 6th Australasian Workshop on
Software and System Architectures, 2005.

[13] [13] E. Woods, "Experiences Using Viewpoints for Information
Systems Architecture: An Industrial Experience Report".

[14] [14] K. Henk and H. V. Vliet, "A method for defining IEEE Std 1471
viewpoints," Journal of Systems and Software, ELSEVIER, vol. 79,
no. 1, pp. 120-131, January 2006.

[15] [15] C. Riva and Y. Yang, "Generation of architectural
documentation using XML," IEEE Computer Society Press, vol. 9,
no. In Proceedings of the Ninth Working Conference on Reverse
Engineering (WCRE02), pp. 161-169, 2002.

[16] [16] P. Clements , "Comparing the SEI’s Views and Beyond
Approach for Documenting Software Architectures with ANSI-IEEE
1471-2000," Software Engineering Institute, Carnegie Mellon
University, July 2005.

[17] [17] N. Rozanski and E. Woods, "Viewpoints and Perspectives
Reference Card," [Online]. Available: http://www.viewpoints-and-
perspectives.info/home/viewpoints/functional-viewpoint/. [Accessed
10 November 2015].

[18] [18] N. Rozanski and E. Woods, "Viewpoints and Concerns," 2011.
[Online]. Available: http://www.viewpoints-
andperspectives.info/home/viewpoints. [Accessed 10 November
2015].

[19] [19] MySQL 5.7 Reference Manual Document, "MySQL 5.7
Reference Manual Document/Full-Text Search Functions/Natural
Language Full-Text Searches," MySQL, [Online]. Available:
https://dev.mysql.com/doc/refman/5.7/en/fulltext-natural-
language.html. [Accessed 25 March 2017 at 8:00AM].

[20] [20] MySQL Reference Manual, "MySQL Reference
Manual/Important Algorithms and Structures/10.7-Full-Text Search,"
[Online]. Available: https://dev.mysql.com/doc/internals/en/full-text-
search.html. [Accessed 1 April 2017 at 05:30PM].

[21] [21] Doxygen Tool website and Doxygen Documentation. [Online].
Available: http://www.doxygen.org/download.html

[22] [22] MI C R O S O F T ® Architecture guide, "MI C R O S O F T ®
Application Architecture Guide(patterns & practices Developer
Center), Application ArcheTypes, Chapter 20: Choosing an
Application Type," 2009. [Online]. Available:
https://msdn.microsoft.com/en-us/library/ee658104.aspx.

[23] [23] C. Stringfellow, C. D. Amory and D. Potnur, "Comparison of
software architecture reverse engineering methods," In Proceedings
of Information and Software Technology, vol. 7, no. 48, pp. 484-497,
July 2006.

[24] [24] C. Meiru, "An Approach to Documenting and Evolving
Architectural Design Decisions," in International Conference on
Software Engineering (ICSE'13), San Francisco, CA, USA, 2013.

[25] [25] R. K. Len Bass and P. Celements, Software Architecture in
Practice, 2nd ed., Addison Wesley Professional, 2003.

[26] [26] K. Lau and C. M. Tran, "X-man: An mde tool for Component
based System Development," in Software Engineering and Advanced
Applications (SEAA), and EUROMICRO Conference, IEEE, 2012.

[27] [27] T. Panas , W. Lowe and U. Aßmann , "Towards the Unified
Recovery Architecture for Reverse Engineering," [Online]. Available:
https://ai2-s2-
pdfs.s3.amazonaws.com/b8e1/c9bd8cf3360b82de68e8049b281a1e2f
4a25.pdf. [Accessed 30 October 2017].

[28] [28] G. C. Penta and D. Massimiliano , "Frontiers of Reverse
Engineering: a Conceptual Model," pp. 38-47, 2008.

[29] [29] A. Razavizadeh , H. Verjus, S. Cˆımpan and S. Ducasse,
"Multiple Viewpoints Architecture Extraction," in IEEE, 2009.

[30] [30] S. Demeyer, S. Ducasse and O. Nierstrasz, "Object Oriented
Reengineering Patterns," Switzerland, Square Bracket Associates,
2008, p. 338.

[31] [31] M. Shahin , P. Liang and M. Khayyambashi, "Architectural
Design Decision: Existing models and tools," in European
Conference on Software Architecture, 2009.

[32] [32] G. Starke and P. Hruschka, "Arc24 Template for documentation
of software and system architecture," 3 May 2017. [Online].
Available: http://www.arc24.de.

[33] [33] G. Liang and L. Yu, "Quality Driven Re-engineering
Framework," Blekinge Institute of Technology, Sweden, December,
2013.

[34] [34] R. Arshad and K. K. Lau , "Extracting Executable Architecture
From Legacy Code Using Static Reverse Engineering," in
International Conference on Software Engineering Advances(ICSEA
2017), 2017.

[35] [35] J. Maras, M. Štula and I. Crnkovic, "PHPModeler- a Web Model
Extractor," in IEEE/ACM International Conference on Automated
Software Engineering, (Nov2009), IEEE Computer Society, 2009.

[36] [36] W. Kim, S. Chung and B. Endicott Popovsky, "Software
Architecture Model Driven Reverse Engineering Approach to Open
Source Software Development," in The 3rd annual conference on
Research in information technology, Atlanta, Georgia, USA, October
15–18, 2014, ACM.

[37] [37] A. Razavizadeh, H. Verjus, S. Cimpan and S. Ducasse, "Multiple
Viewpoints Architecture Extraction," 2009 IEEE/IFIP
WICSA/ECSA, pp. 329-332, 2009, IEEE..

