e-ISSN : 2549-9904 ISSN : 2549-9610

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

Decompositions of Complete Multigraphs into Cyclic Designs

Mowafaq Alqadri[#], Haslinda Ibrahim[#], Sharmila Karim[#]

[#] Department of Mathematics, School of Quantitive Sciences, College of Arts and Sciences, Universiti Utara Malaysia, Kedah, Malaysia E-mail: moufaqq@yahoo.com, linda@uum.edu.my, mila@uum.edu.my

Abstract—Let v and λ be positive integer, λK_v denote a complete multigraph. A decomposition of a graph G is a set of subgraphs of G whose edge sets partition the edge set of G. The aim of this paper, is to decompose a complete multigraph $4K_v$ into cyclic (v - 1)-cycle system according to specified conditions. As the main consequence, construction of decomposition of $8K_v$ into cyclic Hamiltonian wheel system, where $v \equiv 2 \pmod{4}$, is also given. The difference set method is used to construct the desired designs.

Keywords- Cyclic design; Hamiltonian cycle, Near four factor, Wheel graph.

I. INTRODUCTION

Throughout this paper, all graphs consider finite and undirected. A complete graph of order v denotes by K_v . An (G,Y)-design is a decomposition of the graph G into subgraphs belonging to an assigned multiset Y.

An m-cycle, written $C_m=(c_0,\dots,c_(m-1))$, consists of m distinct vertices {c_0,c_1,...,c_(m-1)} and m edges {c_i c_(i+1)}, $0 \le i \le m-2$ and $c_0 c_(m-1)$ and m-cycle of a graph G is called Hamiltonian when its vertices passes through all the vertex set of G. An m-path, written [c_0, ..., c_(m-1)], consists of m distinct vertices {c_0,c_1,...,c_(m-1)} and m-1 edges {c_i c_(i+1)}, $0 \le i \le m-2$. An m-cycle system of a graph G is (G,C)-design where C is a collection of m-cycles. If G=K_v then such m-cycle system is called m-cycle system of order v and is also said a simple when its cycles are all distinct.

An automorphism group on (G,Y)-design is a bijections on V(G) fixed Y. An (G,Y)-design is a cyclic if it admit automorphism group acting regularly on V(G) [1]. For a cyclic (G,Y)-design, we can assume that V(G)=Z_v. So, the automorphism can be represented by

α :*i*→*i*+1 ("mod" v) or α :(0,1,...,v-1)

A starter set of a cyclic (G,Y)-design is a set of subgraphs of G that generates all subgraphs of Y by repeated addition of 1 modular v.

A complete multigraph of order v, denoted by λK_v , is obtained by replacing each edge of K_v with λ edges. The problem which concerned in the decomposition of the complete multigraph into subgraphs has received much attention in recent years. The necessary and sufficient conditions for decomposing λK_v into cycles of order λ and

cycles of prime oredr have been established by [2]. While, the existence theorem of m-cycle system of λK_v has been proved for all values of λ in [3]. For the important case of $\lambda=1$, the existence question for m-cycle system of order v has been completely settled by [4] in the case m odd and by [5] in the case m even. Moreover, the cyclic m-cycle system of order v for m=3, denoted by CTS(v, λ), has been constructed by [6] and for a cyclic Hamiltonian cycle system of order v was proved when v is an odd integer but v \neq 15 and v \neq p^{α} a with p a prime and $\alpha >$ 1 [7].

On the other hand, the necessary and sufficient conditions for decomposing λK_v into cycle and star graphs have been investigated by [8].

A four-factor of a graph G is a spanning subgraph whose vertices have a degree 4. While a near-four-factor is a spanning subgraph in which all vertices have a degree four with exception of one vertex (isolated vertex) which has a degree zero [9].

In this paper, we propose a new type of cyclic cycle system that is called cyclic near Hamiltonian cycle system of $4K_v$, denoted CNHC($4K_v$,C_(v-1)). This is obtained by combination a near-four-factors and cyclic (v-1)-cycle system of $4K_v$ when $v \equiv 2 \pmod{4}$. Furthermore, the construction of CNHC($4K_v$,C_(v-1)) will be employed to decompose $8K_v$ into Hamiltonian wheels.

II. PRELIMINARIES

In our paper, all graphs considered have vertices in Z_{ν} . We will use the difference set method to construct the desired designs. The difference between any two distinct vertices a and b in λK_{ν} is $\pm |a - b|$, arithmetic (mod ν). Given $C_m = (c_0, ..., c_{m-1})$ an *m*-cycle, the differences from C_m are the multiset $\Delta(C_m) = \{\pm | c_i - c_{i-1} | | i = 1, 2, ..., m\}$ where $c_0 = c_m$. Let $\mathcal{F} = \{B_1, B_2, ..., B_r\}$ be an *m*-cycles of λK_v the list of differences from \mathcal{F} is $\Delta(\mathcal{F}) = \bigcup_{i=1}^r \Delta(B_i)$.

The orbit of cycle C_m , denoted by $orb(C_m)$, is the set of all distinct *m*-cycles in the collection $\{C_m + i | i \in Z_v\}$. The length of $orb(C_m)$ is its cardinality, i.e., $orb(C_m) = k$ where k is the minimum positive integer such that $C_m + k = C_m$. A cycle orbit of length v on λK_v is said full and otherwise short. [10]

The stabilizer of a subgraph H of a graph G of order v is $stab(H) = \{z \in Z_v \mid z + H = H\}$ and H has trivial stabilizer when $stab(H) = \{0\}$. One may easily deduce the following result.

For presenting a cyclic m-cycle system of λK_{ν} , it sufficient to construct a starter set, i.e., m-cycle system of representations for its cycle orbits. As particular consequences of the theory developed in [11] we have:

Lemma 1. Let *H* be a subgraph of *G* and |stab(H)| > 1. Then each nonzero integer in ΔH appears a multiple of |stab(H)| times.

Lemma 2. Let δ be a multiset of subgraphs of λK_{ν} and every subgraph of δ has trivial stabilizer. Then δ is a starter of cyclic ($\lambda K_{\nu}, \mathcal{Y}$)-design if and only if $\Delta \delta$ covers each nonzero integer of Z_{ν} exactly λ times.

III. CYCLIC NEAR HAMILTONIAN CYCLE SYSTEM

Definition 1. A full cyclic near Hamiltonian cycle system of the $4K_{\nu}$, denoted by $CNHC(4K_{\nu}, C_{\nu-1})$, is a cyclic $(\nu - 1)$ -cycle system of $4K_{\nu}$ graph, that satisfies the following conditions:

- 1. The cycle in row **r** form a near-4-factor with focus **r**.
- 2. The cycles associated with the rows contain no repetitions.

Surely, for presenting a full cyclic near Hamiltonian cycle system of the $4K_{\nu}$, $CNHC(4K_{\nu}, C_{\nu-1})$, it is sufficient to provide a set of starter set that satisfies a near-4-factor. We give here example to explain the above definition.

Example 1. Let $G = 4K_{14}$ and $\mathcal{F} = \{C_{13}, C_{13}^*\}$ is a set of 13-cycles of G such that:

$$\begin{split} C_{13} &= (1,13,2,12,3,11,4,5,10,6,9,7,8), \\ C_{13}^* &= (13,8,12,9,11,10,4,3,5,2,6,1,7). \end{split}$$

Firstly, it is easy to observe that each non zero element in Z_{14} occurs exactly twice in the 13-cycles of \mathcal{F} . Since, the cycle graph is 2-regular graph, then every vertex has a degree 4 except a zero element (isolated vertex) has a degree zero. Thus, it is satisfies the near-4-factor with focus zero element. Secondly, the list of differences set of the set \mathcal{F} is listed in Table I

TABLE I THE LIST OF DIFFERENCES OF $\mathcal F$

13-cycles	Difference set
(1,13,2,12,3,11,4,5,10,6,9,7,8)	{2,12,3,11,4,10,5,9,6,8,7,7,1,13, 5,9,4,10,3,11,2,12,1,13,7,7 }
(13,8,12,9,11,10,4,3,5,2,6,1,7)	${5,9,4,10,3,11,2,12,1,13,6,8,1,13,\\2,12,3,11,4,10,5,9,6,8,6,8}$

It can be seen from the Table I, $\Delta(\mathcal{F}) = \Delta(C_{12}) \cup \Delta(C_{13}^*)$ covers each nonzero element in Z_{14} exactly four times. Since the cycles set \mathcal{F} has trivial stabilizer based on Lemma 1, then the set $\mathcal{F} = \{C_{12}, C_{13}^*\}$ is the starter set of $CNHC(4K_{14}, C_{13})$ by Lemma 2.

Therefore, $CNHC(4K_{14}, C_{13})$ is an (14×2) array design and cycles set $\mathcal{F} = \{C_{13}, C_{13}^*\}$ in the first row generates all cycles in (14×2) array by repeated addition of 1 modular 14 as shown in the Table II.

TABLE II $CNHC(4K_{14}, C_{13})$

Focus	CNHC(4K ₁₄ , C ₁₃)	
r = 0	(1,13,2,12,3,11,4,5,10,6,9,7,8)	(13,8,12,9,11,10,4,3,5,2,6,1,7)
r = 1	(2,0,3,13,4,12,5,6,11,7,10,8,9)	(0,9,13,10,12,11,5,4,6,3,7,2,8)
r = 2	(3,1,4,0,5,13,6,7,12,8,11,9,10)	(1,10,0,11,13,12,6,5,7,4,8,3,9)
:	1	:
r = 13	(0,12,1,1,2,10,3,4,9,5,8,6,7)	(12,7,11,8,10,9,3,2,4,1,5,0,6)

Throughout the paper, a near Hamiltonian cycle of order (v-1) will be represented as connected paths, we mean that $C_{v-1} = (c_{(1)}, P_{(1,2)}^{2n}, P_{(3,4)}^{2n})$ where, $P_{(1,2)}^{2n}$ and $P_{(3,4)}^{2n}$ are (2*n*)-paths such that:

$$\begin{split} P^{2n}_{(1,2)} &= \begin{bmatrix} c_{(1,1)}, c_{(2,1)}, c_{(1,2)}, c_{(2,2)}, \dots, c_{(1,n)}, c_{(2,n)} \end{bmatrix} \\ &= \begin{bmatrix} \bigcup_{i=1}^n c_{(1,i)}, c_{(2,i)} \end{bmatrix} \\ P^{2n}_{(3,4)} &= \begin{bmatrix} c_{(3,1)}, c_{(4,1)}, c_{(3,2)}, c_{(4,2)}, \dots, c_{(3,n)}, c_{(4,n)} \end{bmatrix} \\ &= \begin{bmatrix} \bigcup_{i=1}^n c_{(3,i)}, c_{(4,i)} \end{bmatrix} \end{split}$$

Let the vertex sets of $P_{(1,2)}^{2n}$ and $P_{(3,4)}^{2n}$ are $\{\bigcup_{i=1}^{n} c_{(1,i)}, \bigcup_{i=1}^{n} c_{(2,i)}\}, \{\bigcup_{i=1}^{n} c_{(3,i)}, \bigcup_{i=1}^{n} c_{(4,i)}\}$, respectively. And the list of difference sets of $P_{(1,2)}^{2n}$ and $P_{(3,4)}^{2n}$ will be calculated as follows:

$$\begin{split} &\Delta\big(P_{(1,2)}^{2n}\big) = \Delta_1\big(P_{(1,2)}^{2n}\big) \cup \Delta_2\big(P_{(1,2)}^{2n}\big), \\ &\Delta\big(P_{(3,4)}^{2n}\big) = \Delta_1\big(P_{(3,4)}^{2n}\big) \cup \Delta_2\big(P_{(3,4)}^{2n}\big) \text{ such that } \\ &\Delta_1\big(P_{(1,2)}^{2n}\big) = \big\{\pm \big|c_{(1,i)} - c_{(2,i)}\big| \, \big| 1 \le i \le n\big\}, \\ &\Delta_2\big(P_{(1,2)}^{2n}\big) = \big\{\pm \big|c_{(1,i+1)} - c_{(2,i)}\big| \, \big| 1 \le i \le n-1\big\}, \\ &\Delta_1\big(P_{(3,4)}^{2n}\big) = \big\{\pm \big|c_{(3,i)} - c_{(4,i)}\big| \big| 1 \le i \le n\big\}, \\ &\Delta_2\big(P_{(3,4)}^{2n}\big) = \big\{\pm \big|c_{(3,i+1)} - c_{(4,i)}\big| \big| 1 \le i \le n-1\big\}. \end{split}$$

define $\Delta(c_{(1)}, P_{(1,2)}^{2n}), \Delta(P_{(3,4)}^{2n}, c_{(1)})$ and And we $\Delta(P_{(1,2)}^{2n}, P_{(3,4)}^{2n})$ as follows $\Delta(c_{(1)}, P_{(1,2)}^{2n}) = \pm |c_{(1)} - c_{(1,1)}|,$ $\Delta \begin{pmatrix} P_{(3,4)}^{2n}, c_{(1)} \end{pmatrix} = \pm |c_{(4,n)} - c_{(1)}| \\ \Delta \begin{pmatrix} P_{(1,2)}^{2n}, P_{(3,4)}^{2n} \end{pmatrix} = \pm |c_{(2,n)} - c_{(3,1)}|.$

So, the list of difference of $C_{\nu-1}$ shall be represented as a follows:

 $\begin{array}{l} \Delta(C_{\nu-1}) = \Delta(P_{(1,2)}^{2n}) \cup \Delta(P_{(3,4)}^{2n}) \cup \Delta(c_{(1)}, P_{(1,2)}^{2n}) \cup \\ \Delta(P_{(3,4)}^{2n}, c_{(1)}) \cup \Delta(P_{(1,2)}^{2n}, P_{(3,4)}^{2n}) \end{array}$

Now we are able to provide our main result.

Theorem 1. There exists a full cyclic near Hamiltonian cycle system of $4K_{\nu}$, $CNHC(4K_{\nu}, C_{\nu-1})$, when v = 4n + 2, n > 2.

Proof. Suppose $\mathcal{F} = \{C_{4n+1}, C_{4n+1}^*\}$ is a set of near Hamiltonian cycles of $4K_{4n+2}$ where

$$\begin{split} C_{4n+1} &= \left(1, P_{(1,2)}^{2n}, P_{(3,4)}^{2n}\right), \\ C_{4n+1}^* &= \left(2n+1, P_{(1,2)}^{(2n)^*}, P_{(3,4)}^{(2n)^*}\right) \end{split}$$

Such that:

- $$\begin{split} P_{(1,2)}^{2n} &= [4n+1,2,4n,3,\ldots,3n+2,n+1]. \\ &= [\bigcup_{i=1}^{n} 4n+2-i,i+1] \\ P_{(3,4)}^{2n} &= [n+2,3n+1,n+3,3n,\ldots,2n+1,2n+2] \\ &= [\bigcup_{i=1}^{n} n+1+i,3n+2-i] \end{split}$$
- $\begin{aligned} P_{(1,2)}^{(2n)^*} &= [4n+1, 2n+2, 4n, 2n+3, \dots, 3n+2, 3n+1] = [\bigcup_{i=1}^n 4n+2-i, 2n+1+i] \end{aligned}$
- $P_{(3,4)}^{(2n)^*} = [n + 1, n, n + 2, n 1, ..., 2n, 1]$ $= [\bigcup_{i=1}^{n} n + i, n + 1 - i].$

We will divide the proof into two parts as follows:

Part 1. In this part will be proved that \mathcal{F} satisfies a near-4factor. We shall calculate the vertex set of C_{4n+1} and C_{4n+1}^* such that:

$$V(C_{4n+1}) = V(P_{(1,2)}^{2n}) \cup V(P_{(3,4)}^{2n}) \cup \{1\}.$$

$$V(C_{4n+1}^{4n+1}) = V(P_{(1,2)}^{(2n)^*}) \cup V(P_{(3,4)}^{(2n)^*}) \cup \{2n+1\}.$$

$$\bigcup_{i=1}^{n} c_{(1,i)} = \{4n+2-i, 1 \le i \le n\}$$

$$= \{4n+1, 4n, ..., 3n+2\}, \qquad (1)$$

$$\bigcup_{i=1}^{n} c_{(2,2)} = \{i+1, 1 \le i \le n\} = \{2, 3, n+1\}. \qquad (2)$$

$$\bigcup_{i=1}^{n} c_{(2,i)} = \{n+1+i, 1 \le i \le n\}$$

$$\bigcup_{i=1}^{n} c_{(2,i)} = \{n+1+i, 1 \le i \le n\}$$
(2)

$$= \{n + 2, n + 3, ..., 2n + 1\},$$

$$\bigcup_{i=1}^{n} c_{(4,i)} = \{3n + 2 - i, 1 \le i \le n\}$$

$$= \{3n + 1, 3n, ..., 2n + 2\}.$$
(4)

From above equations, it is easy to notice that $V(C_{4n+1})$ covers each nonzero element of Z_{4n+2} exactly once.

$$\bigcup_{i=1}^{n} c^{*}_{(1,i)} = \{4n+2-i, 1 \le i \le n\} \\
= \{4n+1, 4n, \dots, 3n+2\},$$
(5)

$$\bigcup_{i=1}^{n} c^{*}_{(2,i)} = \{2n + 1 + i, 1 \le i \le n\}$$

= $\{2n + 2, 2n + 3, ..., 3n + 1\}.$ (6)

$$\bigcup_{i=1}^{n} c^*_{(3,i)} = \{n+i, 1 \le i \le n\} \\
 = \{n+1, n+2, ..., 2n\}
 \tag{7}$$

$$\bigcup_{i=1}^{n} c^*_{(4,i)} = \{n+1-i\} = \{n, n-1, \dots, 1\}$$
(8)

It can be observed from the above equations that $V(C_{4n+1}) = V(C_{4n+1}^*)$. Then, the multiset $V(C_{4n+1}) \cup V(C_{4n+1}^*)$ covers each nonzero elements of Z_{4n+2} exactly twice. Since the cycle graph is 2-regular graph, therefore $\mathcal{F} = \{C_{4n+1}, C_{4n+1}^*\}$ satisfies a near-fourfactor (with focus zero).

Part 2. In this part we will prove $\mathcal{F} = \{C_{4n+1}, C_{4n+1}^*\}$ is the starter set of cyclic $(\nu - 1)$ -cycle system of $4K_{\nu}$. So, we will calculate the difference set of each of them as follows:

$$\Delta(C_{4n+1}) = \Delta(P_{(1,2)}^{2n}) \cup \Delta(P_{(3,4)}^{2n}) \cup \Delta(c_{(1)}, P_{(1,2)}^{2n}) \cup \Delta(P_{(1,2)}^{2n}, P_{(3,4)}^{2n}) \cup \Delta(P_{(3,4)}^{2n}, c_{(1)})$$
(9)

$$\Delta_1(P_{(1,2)}^{2n}) = \bigcup_{i=1}^n \pm |4n+1-2i| = \{4n-1, 4n-1, 4n-1,$$

$$\Delta_2(P_{(1,2)}^{2n}) = \bigcup_{i=1}^{n-1} \pm |4n - 2i| = \{4n - 2, 4n - 4, \dots, 2n + 2\} \cup \{4, 6, \dots, 2n\}$$

$$\Delta_1(P_{(3,4)}^{2n}) = \bigcup_{i=1}^n \pm |2n+1-2i| = \{2n-1, 2n-1, 2n-1, 2n-1\} \cup \{2n+3, 2n+5, \dots, 4n+1\}$$

$$\Delta_2(P_{(3,4)}^{2n}) = \bigcup_{i=1}^{n-1} \pm |2n-2i| = \{2n-2, 2n-4, 2n-2, 2n-4, 2n-$$

 $4, ..., 2 \cup \{2n + 4, 2n + 6, ..., 4n\}$

•
$$\Delta(c_{(1)}, P_{(1,2)}^{2n}) = \pm |c_{(1)} - c_{(1,1)}| = \{2, 4n\},$$

 $\Delta \left(P_{(1,2)}^{2n}, P_{(3,4)}^{2n} \right) = \pm \left| c_{(2,n)} - c_{(3,1)} \right| = \{1, 4n + 1\}.$

•
$$\Delta(P_{(3,4)}^{2n}, c_{(1)}) = \pm |c_{(4,n)} - c_{(1)}| = \{2n + 1, 2n + 1\}$$

From the equation 9. We note that the list of differences of C_{4n+1} , $\Delta(C_{4n+1})$, covers each nonzero elements of Z_{4n+2} twice except the differences $\{2n, 2n+2\}$ appear once.

Now we will calculate $\Delta(C_{4n+1}^*)$ such as

$$\Delta(C_{4n+1}^{*}) = \Delta\left(P_{(1,2)}^{(2n)^{*}}\right) \cup \Delta\left(P_{(3,4)}^{(2n)^{*}}\right) \cup \Delta\left(c_{(1)}^{*}, P_{(1,2)}^{(2n)^{*}}\right) \cup \Delta\left(P_{(2,4)}^{(2n)^{*}}, c_{(1)}^{*}\right) \cup \Delta\left(P_{(2,4)}^{(2n)^{*}}, c_{(1)}^{*}\right)$$

$$(10)$$

$$\Delta_1 \left(P_{(1,2)}^{(2n)^-} \right) = \bigcup_{i=1}^n \pm |2n+1-2i| = \{2n-1, 2n-3, \dots, 1\} \cup \{2n+3, 2n+5, \dots, 4n+1\}$$

 $\begin{array}{l} \Delta_2\left(P_{(1,2)}^{(2n)^*}\right) = \bigcup_{i=1}^{n-1} \pm |2n - 2i| = \{2n - 2, 2n - 4, \dots, 2\} \cup \{2n + 4, 2n + 6, \dots, 4n\} \end{array}$

 $\Delta_1\left(P_{(2,4)}^{(2n)^*}\right) = \bigcup_{i=1}^n \pm |2i-1| = \{1, 3, \dots, 2n-1\} \cup \{4n+1, 4n-1, \dots, 2n+3\}$

$$\Delta_2 \left(P_{(3,4)}^{(2n)^*} \right) = \bigcup_{i=1}^{n-1} \pm |2i| = \{2, 4, \dots, 2n-2\} \cup \{4n, 4n-2, \dots, 2n+4\}$$

- $\Delta\left(c_{(1)}^{*}, P_{(1,2)}^{(2n)^{*}}\right) = \pm |c_{(1)}^{*} c_{(1,1)}^{*}| = \{2n, 2n+2\}.$ $\Delta\left(P_{(1,2)}^{(2n)^{*}}, P_{(3,4)}^{(2n)^{*}}\right) = \pm |c_{(2,n)}^{*} - c_{(3,1)}^{*}| = \{2n, 2n+2\}.$
- 4
- $\Delta\left(P_{(2,4)}^{(2n)^*}, c_{(1)}^*\right) = \pm |c_{(4,n)}^* c_{(1)}^*| = \{2n, 2n+2\}$

As clearly shown, in the equations 10, every nonzero element in Z_{4n+2} appears twice except $\{2n, 2n + 2\}$ appear three times in $\Delta(C_{4n+1}^*)$. Based on Lemma 1, the cycles $\{C_{4n+1}, C_{4n+1}^*\}$ have trivial stabilizer.

One can easily note that $\Delta(\mathcal{F}) = \Delta(C_{4n+1}) \cup \Delta(C_{4n+1}^*)$ covers each non zero integers in Z_{4n+2} four times. Thus, $\mathcal{F} = \{C_{4n+1}, C_{4n+1}^*\}$ is the starter cycles of cyclic $(\nu - 1)$ cycle system of $4K_{\nu}$ by Lemma 2. Hence, the cycles set $\mathcal{F} = \{C_{4n+1}, C_{4n+1}^*\}$ generates a full near Hamiltonian cycle system of $4K_{\nu}$ by adding one modular ν when $\nu = 4n + 2, n > 2$

IV. CYCLIC HAMILTONIAN WHEEL SYSTEM

A wheel graph of order m, denoted by W_m , consists of a singleton graph K_1 and a cycle graph of order m - 1, C_{m-1} , in which the K_1 is connected to all the vertices of C_{m-1} , written $K_1 + C_{m-1}$ or $c_0 + (c_1, c_2, \dots, c_{m-1})$. An m-wheel contains 2(m - 1) edges such that the edge set of W_m is $E(W_m) = E(K_{1,(m-1)}) \cup E(C_{m-1})$ [12].

An m-wheel system of graph G is a decomposition of edge set of G into collection $\mathcal{W} = \{W_{m_1}, \dots, W_{m_r}\}$ of edgesdisjoint of *m*-wheels. Similar to the cyclic cycle system, an *m*-wheel system of λK_{ν} is a cyclic if $V(\lambda K_{\nu}) = Z_{\nu}$ and if $W_m = c_0 + (c_1, c_2, \dots, c_{m-1}) \in \mathcal{W}$ implies $W_m + 1 = (c_0 + 1) + (c_1 + 1, c_2 + 1, ..., c_{m-1} + 1)$ is also in \mathcal{W} . Moreover, if m = v then it is called a cyclic Hamiltonian wheel system. The list of difference of $W_m = c_0 + (c_1, c_2, \dots, c_{m-1})$ is $\begin{array}{ll} \Delta(W_m) = \Delta(K_{1,(m-1)}) \cup \Delta(C_{m-1}) & \text{such} & \text{that} \\ \Delta(C_m) = \{ \pm |c_{i+1} - c_i| | \ 1 \le i \le m-1 \} & \text{where} & c_m = c_0 \end{array}$ and $\Delta \left(K_{(1,(m-1))} \right) = \{ \pm | c_i - c_0 | | 1 \le i \le m - 1 \}$. More generally, given a multiset $W = \{W_{m_1}, ..., W_{m_r}\}$ of mwheels of λK_{v} , the list of differences from $\mathcal W$ is $\Delta W = \bigcup_{i=1}^{r} \Delta W_{m_i}$.

Definition 2. The full cyclic Hamiltonian wheel system of a graph $8K_{\nu}$, denoted by *CHWS* ($8K_{\nu}$, W), is a cyclic (ν) wheel system of a graph $8K_{\nu}$ that generated by starter set $W = \{W_{\nu_1}, \dots, W_{\nu_r}\}$ such that the associated cycles with wheels satisfy near-four-factor with focus singleton graph. In other words *CHWS* ($8K_v$, W) is a ($v \times |W|$) array such that satisfies the following conditions:

- 1) The wheels in row r form a r +(near-four-factor).
- 2) The wheels associated with the rows contain no repetitions.

For clarity, we provide an example to demonstrate the construction of a cyclic Hamiltonian wheel system stated above.

Example 2. Let $G = 8K_{14}$ and $\mathcal{W} = \{W_{14}, W_{14}^*\}$ is a set of Hamiltonian wheels of $8K_{14}$. Where $W_{14} = K_1 + C_{13} = 0 +$ (1, 13, 2, 12, 3, 11, 4, 5, 10, 6, 9, 7, 8)and $W_{14}^* = K_1^* + C_{13}^* = 0 + (13, 8, 12, 9, 11, 10, 4, 3, 5, 2, 6, 1, 7)$

From the Example 1, we can note that the 13-cycles $\{C_{13}, C_{13}^*\}$ satisfy a near-four-factor with focus 0 (zero element). Moreover, the list of differences from $\{C_{12}, C_{13}^*\}$ covers every nonzero element of Z_{14} exactly four times. Now we want to find the list of differences from $\{K_{L(13)}\} \cup \{K_{1,(12)}^*\}$ as a follows

$$\Delta(K_{1,(13)}) = \{ \pm |c_i - c_0| \mid 1 \le i \le 13 \}$$

= $\{ \pm |c_i| \quad |1 \le i \le 13 \}$

such that the $c_i \in V(C_{13})$, $1 \le i \le 13$. Since the vertex set of C_{13} is $Z_{14} - \{0\}$ and $Z_{14} = -Z_{14}$, then $\Delta(K_{1,(13)})$ covers each nonzero element of Z_{14} twice. Similarly, one can be found $\Delta(K_{1,(12)}^*) = \Delta(K_{1,(12)})$. So $\Delta(W)$ covers each nonzero of Z_{14} four times. Thus, $W = \{W_{14}, W_{14}^*\}$ is the starter set of *CHWS* (8 K_{14}, W).

Then *CHWS* ($8K_{14}$, W_{14}) is an (14×2) array deign where all its wheels can be generated by repeated addition 1 (modular 14) on the starter set W as shown in the Table III.

TABLE III CHWS(8K₁₄, W₁₄)

$CHWS(8K_{14},W)$		
0 + (1,13,2,12,3,11,4,5,10,6,9,7,8)	0+(13,8,12,9,11,10,4,3,5,2,6,1,7)	
1+(2,0,3,13,4,12,5,6,11,7,10,8,9)	1+(0,9,13,10,12,11,5,4,6,3,7,2,8)	
2 + (3,1,4,0,5,13,6,7,12,8,11,9,10)	2 + (1,10,0,11,13,12,6,5,7,4,8,3,9)	
:	1	
13 + (0,12,1,1,2,10,3,4,9,5,8,6,7)	13 + (12,7,11,8,10,9,3,2,4,1,5,0,6)	

The following theorem proves the existence of $CHWS(8K_{4n+2}, W)$.

Theorem 2. There exists a full cyclic Hamiltonian wheel system of $8K_v$, *CHWS* ($8K_v$, *W*), for v = 4n + 2, n > 2.

Proof. We have to present a starter set $\mathcal{W} = \{K_1 + C_{4n+1}, K_1^* + C_{4n+1}^*\}$ of *CHWS* $(8K_v, \mathcal{W})$ such

that the cycles associated with the wheels in \mathcal{W} satisfy a near-four-factor with focus a singleton graph.

Suppose $\mathcal{W} = \{0 + C_{4n+1}, 0 + C_{4n+1}^*\}$ is a set of Hamiltonian wheels of $8K_{4n+2}$ where

$$\begin{split} & C_{4n+1} = \left(1, P_{(1,2)}^{2n}, P_{(3,4)}^{2n}\right), \\ & C_{4n+1}^* = \left(2n+1, P_{(1,2)}^{(2n)^*}, P_{(3,4)}^{(2n)^*}\right) \\ & \text{Such that:} \\ & \quad P_{(1,2)}^{2n} = [4n+1, 2, 4n, 3, \dots, 3n+2, n+1]. \\ & \quad P_{(3,4)}^{2n} = [n+2, 3n+1, n+3, 3n, \dots, 2n+1, 2n+4]. \\ & \quad 2] \end{split}$$

$$P_{(1,2)}^{(2n)^{-}} = [4n + 1, 2n + 2, 4n, 2n + 3, ..., 3n + 2, 3n + 1]$$

•
$$P_{(3,4)}^{(2n)^*} = [n+1, n, n+2, n-1, ..., 2n, 1].$$

From Theorem 1, the cycles associated with the Hamiltonian wheels in \mathcal{W} satisfy the near-four-factor with focus zero element.

Now, we want to prove $\mathcal{W} = \{K_1 + C_{4n+1}, K_1^* + C_{4n+1}^*\}$ is a $(\lambda K_v, \mathcal{W})$ -difference system. To do this, it is enough to show that the list of differences

$$\Delta \mathcal{W} = \left\{ \Delta(C_{4n+1}) \cup \Delta(C_{4n+1}^*) \cup \Delta(K_{1,(4n+1)}^*) \cup \Delta(K_{1,(4n+1)}) \right\}$$

covers each element of $\{Z_{4n+2} - \{0\}\}$ eight times. Firstly, as indicated in Theorem 1, the list of differences of $\{(C_{4n+1}) \cup (C_{4n+1}^*)\}$ cover each nonzero element in Z_{4n+2} exactly four times.

Secondly, the list of differences of $(K_{1,(4n+1)})$ is $\{\pm | c_i - 0 | | c_i \in C_{4n+1}\}$. Since $V(C_{4n+1}) = Z_{4n+2} - \{0\}$ then $\{|c_i - 0 | | c_i \in C_{4n+1}\} = Z_{4n+2} - \{0\}$. Because of $Z_{4n+2} = -\{Z_{4n+2}\}$, then $\Delta(K_{1,(4n+1)}) = \{\pm | c_i - 0 | | c_i \in C_{4n+1}\}$ covers each nonzero element of Z_{4n+2} twice. Likewise, we repeat the same strategy on cycle $K_{1,(4n+1)}^*$ to find $\Delta(K_{1,(4n+1)}^*)$. Also, it is an easy matter to check that $\Delta(K_{1,(4n+1)}^*) = \Delta(K_{1,(4n+1)})$.

Linking together the above list of differences, we see that ΔW covers each nonzero element of Z_{4n+2} eight times. On the other hand, each wheel graph in W has trivial stabilizer based on Lemma 1. Therefore, W is the starter set of

CHWS ($8K_{\nu}$, W), by Lemma 2. One can be generated *CHWS* ($8K_{\nu}$, W) by repeated addition 1 modular ν on W.

V. CONCLUSION

In this paper, we have provided new designs $CNHC(4K_{\nu}, C_{\nu-1})$ and $CHWS(8K_{\nu}, W_{\nu})$ where $\nu \equiv 2(mod4)$. These designs are interested in a decomposition of complete multigraph into cyclic $(\nu - 1)$ -cycle and cyclic (ν) -wheel graphs, respectively. We have also proved the existence of these designs by constructed the starter set for each of them. Moreover, one can ask if $CNHC(2\lambda K_{\nu}, C_{\nu-1})$ and $CHWS(2\lambda K_{\nu}, W_{\nu})$ can be constructed for the case $\nu \equiv 2, 4 \pmod{4}$ and $\lambda > 2$

REFERENCES

- S. L. Wu and H. C. Lu, "Cyclically decomposing the complete graph into cycles with pendent edges". ARS COMBINATORIA-WATERLOO THEN WINNIPEG, vol. 86, no. 217, 2008.
- [2] B. R. Smith, "Cycle decompositions of complete multigraphs," Journal of Combinatorial Designs, vol. 18, no. 2, pp.85-93, 2010.
- [3] D. Bryant, D. Horsley, B. Maenhaut and B. R. Smith, "Cycle decompositions of complete multigraphs", Journal of Combinatorial Designs, vol. 19, no. 1, pp. 42-69, 2011.
- [4] B. Alspach and H. Gavlas, "Cycle decompositions of K_n and K_n-I,". Journal of Combinatorial Theory, Series B, vol. 81, no. 1, pp. 77-99, 2001.
- [5] M. Šajna, "Cycle decompositions III: complete graphs and fixed length cycles," Journal of Combinatorial Designs, vol. 10, no. 1, pp. 27-78, 2002.
- [6] M. J. Colbourn and C. J. Colbourn, "Cyclic block designs with block size 3," European Journal of Combinatorics, vol, 2, no. 1, pp. 21-26, 1981.
- [7] M. Buratti and A. Del Fra, "Cyclic Hamiltonian cycle systems of the complete graph," Discrete mathematics, vol. 279, no. 1, pp. 107-119, 2004.
- [8] F. Beggas, M. Haddad and H. Kheddouci, "Decomposition of Complete Multigraphs Into Stars and Cycles," Discussiones Mathematicae Graph Theory, vol. 35, no. 4, pp. 629-639, 2015.
- [9] R. S. Rees, "The spectrum of triangle-free regular graphs containing a cut vertex," Australasian Journal of Combinatorics, vol. 26, pp. 135-14, 2002.
- [10] S. L. Wu and H. L. Fu, "Cyclic m cycle systems with m≤ 32 or m= 2q with q a prime power," . Journal of Combinatorial Designs, vol. 14, no. 1, pp. 66-81, 2006
- [11] M. Buratti, "A description of any regular or 1-rotational design by difference methods," Booklet of the abstracts of Combinatorics, pp. 35-52, 2000.
- [12] S. Pemmaraju and S. Skiena, "Cycles, stars, and wheels," Computational Discrete Mathematics Combinatiorics and Graph Theory in Mathematica, pp. 284-249, 2003.