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Abstract— This paper aims to investigate the role that artificial intelligence (AI) plays in promoting sustainability in the marine industry. 

The report demonstrates the potential of AI-driven technology to improve vessel operations, decrease emissions, and promote 

environmental stewardship. This potential is shown by detailed examination of existing trends, problems, and possibilities. Several vital 

studies highlight the significance of policy interventions that encourage the use of artificial intelligence. These interventions include 

financial incentives, legal frameworks, and programs to increase capability. Throughout this work, the importance of the role that 

artificial intelligence plays in driving efficiency, safety, and sustainability is emphasized. This work also highlights the urgent need for 

action to address climate change and environmental degradation in the marine sector. The marine industry can lessen its carbon 

footprint, decrease pollution, and improve ecosystem health if it shifts to various alternative fuels, renewable energy sources, and 

technologies powered by artificial intelligence. At the end of this work, an appeal is made to policymakers, industry stakeholders, and 

technology providers, urging them to prioritize investments in artificial intelligence research and development and to create 

collaboration to speed up the transition to a marine sector that is more sustainable and resilient. 
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I. INTRODUCTION

Maritime transportation is a crucial player in global 
transportation [1]; it helps drive the growth of the global 
economy due to its ability to reduce transportation costs and 
facilitate speedier intermodal operations across other modes 
of transportation [2]–[5], which ports serve as crucial links for 
the transportation of products between the shoreline and the 
country's interior [6], [7]. In addition, the issue of 
environmental sustainability has become a significant focus 
for many marine industries relating to port activities, shipping, 
and shipbuilding due to the problems posed by climate change 
and the increasing needs of the logistics and transportation 
industries [8]–[10]. The augmentation of marine 
transportation has partially contributed to the growth of urban 
economies; nevertheless, it has also resulted in resource 
depletion and environmental damage [11]–[13]. To attain 
sustainable expansion in urban areas and harbors, employing 

energy-efficient equipment that minimizes emissions is 
imperative. Ports are involved with various emissions 
originating from many sources [14], [15]. The emissions 
encompass marine vessels, vehicles, and cargo-handling 
systems, and they significantly impact the ecosystem [16]–
[18]. Furthermore, it is crucial to acknowledge that activities 
such as container drayage and interterminal transit 
significantly contribute to the emissions generated by ports 
[19], [20]. Consequently, the need to research environmental 
improvements at maritime ports, which serve as crucial 
transportation hubs, has increased. This is because these 
upgrades enhance several environmental sustainability areas 
that governments and corporations are striving to address [21], 
[22].   

The marine industry, which plays a significant part in 
international commerce and transportation, is undergoing 
significant environmental and technological transformation 
[23]–[25]. The market places a considerable emphasis on 
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alternative fuels, energy derived from renewable sources, and 
artificial intelligence (AI), among other essential components. 
By enhancing sustainability, efficiency, and environmental 
responsibility, these three pillars have the potential to provide 
the maritime industry with more significant opportunities for 
improvement [26], [27]. Traditional fossil fuels, such as oil 
and diesel, have been depended on by the marine industry for 
a very long time [28], [29]. These fuels not only contribute to 
the emission of greenhouse gases but also present the 
possibility of oil leaks. Alternative fuels, which include 
liquefied natural gas (LNG), LPG, hydrogen, and biofuels 
[30]–[34], provide options that are both sustainable and 
beneficial to the environment [35]–[38]. If the marine sector 
were to make use of alternative fuels and renewable energy, 
it would be possible to drastically cut greenhouse gas 
emissions while simultaneously improving air quality in port 
regions and coastal zones [39], [40]. Two advantages may be 
gained by utilizing renewable energy sources such as solar 
and wind power to generate electricity [41]–[46]. By 
installing solar panels and wind turbines on ships or harbors, 
it is possible to reduce the need for fossil fuels while 
simultaneously providing an environmentally friendly and 
dependable source of energy consumption [47]–[50]. It is also 
possible to deploy technologies that generate renewable 
energy for emission-free powering systems, which is an 
essential step toward achieving zero-emission shipping [51]–
[53].  

Artificial Intelligence (AI) has the potential to 
revolutionize several aspects of many sectors, such as 
maritime industry, energy, transportation, manufacturing, and 
agriculture [54]–[63]. In addition, AI has been found to have 
great potential in other fields such as medicine, society, 
education, and economy [64]–[68]. With autonomous boats, 
predictive maintenance, and route optimization, AI may 
enhance safety, productivity, and decision-making processes 
[69]–[71]. AI can optimize routes, reduce fuel consumption, 
and improve operational efficiency by analyzing data 
gathered from sensors, weather reports, and historical travel 
records. These three factors must interact for the marine 
industry to be viable over the long run. For instance, AI can 
help integrate renewable energy sources and alternative fuels 
[72]–[74]. Power systems may be efficiently managed by it, 
ensuring that ships use alternative fuels when available and 
switch to traditional fuels when needed [75]–[77]. This 
technique lowers emissions without sacrificing operational 
stability. Utilizing these technologies also aligns with 
international efforts to reduce greenhouse gas emissions and 
address the environmental effects of the marine sector. The 
International Maritime Organization (IMO) has set aggressive 
goals to improve energy efficiency and reduce emissions; 
alternative fuels, AI, and renewable energy will be critical to 
achieving these objectives. Ultimately, the maritime sector is 
pivotal in its history, and renewable energy, artificial 
intelligence, and alternative fuels might significantly 
influence its future. By adding these elements, the sector may 
move closer to a more ecologically responsible and 
sustainable future, reducing its ecological footprint while 
increasing its efficiency and competitiveness in a constantly 
changing global market. This research will thoroughly 
investigate and explain how alternative fuels, renewable 
energy, and artificial intelligence will disrupt the marine 

industry. This study aims to understand better the obstacles 
and possibilities associated with using these cutting-edge 
technologies and processes. The paper informs policymakers, 
industry stakeholders, and academics on how these insights 
might enhance maritime operations' sustainability, efficiency, 
and environmental stewardship. We wish to contribute to 
developing well-informed policies and initiatives that will 
propel the marine industry toward a more environmentally 
friendly, technologically advanced future. 

II. MATERIALS AND METHOD 

A. Literature review 

The evolution of green marine policies throughout history 
has been defined by a growing understanding of 
environmental concerns, the establishment of more 
sophisticated standards, and a shared determination to limit 
the ecological effect of the maritime sector. These three 
factors have been integral to the growth of green marine 
policies. Concerns about the environmental impact of the 
shipping sector first surfaced in the later part of the 20th 
century, when the roots of environmentally aware maritime 
legislation can be traced back to its beginnings [78]. The 
increase in pollution, oil spills, and rubbish dumping in seas 
has been a concern for environmentalists and governments 
worldwide.  

The MARPOL Convention is an international convention 
created to save the maritime environment and prevent 
pollution caused by ships. The International Convention for 
the Prevention of Pollution from Ships (MARPOL), 
implemented by the International Marine Organization (IMO) 
in 1973, is considered one of the first and most important 
international accords that address the issue of pollution in the 
aquatic environment. Several laws were put into place by 
MARPOL to limit the pollution produced by ships. These 
regulations focused on oil pollution, dangerous liquid 
chemicals, garbage, and air emissions [79], [80]. The 
futuristic IMPO plan for green shipping is depicted in Fig. 1. 
On November 2, 1973, the International Maritime 
Organization (IMO) approved the MARPOL Convention. A 
string of tanker accidents between 1976 and 1977 led to 
establishing the Protocol of 1978, which directly responded to 
those disasters. Because the MARPOL Convention of 1973 
had not been implemented, the MARPOL Protocol of 1978 
effectively absorbed and superseded the original Convention. 
The combined document entered into force by the law on 
October 2, 1983. The Convention was modified in 1997 by 
the approval of a Protocol, which included the establishment 
of a new Annex VI [21], [22]. This was one of the 
amendments that was made. The date when this modification 
became effective was May 19th, 2005. Throughout its 
existence, the MARPOL convention has been subjected to 
alterations in the form of amendments that have been 
implemented. The Convention includes provisions intended 
to prevent and decrease pollution produced by ships. These 
laws include accidental contamination and pollution that 
result from ships' everyday activities. Currently, there are six 
technical Annexes inside it. Particular Areas, which are 
usually included in the majority of Annexes, are responsible 
for enforcing tight rules on operational discharges [78], [82], 
[83].  
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Fig. 1  The IMO plan for green shipping [81] 

 
Throughout its existence, the MARPOL Convention has 

been subjected to many updates, some of which have been 
particularly noteworthy, such as Annex VI, which addresses 
the problem of air pollution created by ships. The 
implementation of Annex VI in 1997, followed by its 
strengthening in 2005, resulted in the establishment of 
stringent rules for the emission of sulfur oxides (SOx) and 
nitrogen oxides (NOx) from commercial vessels. According 
to these laws, using fuels with low levels of sulfur and 
installing catalytic converters are encouraged. Annex VI of 
the MARPOL Convention was the source of inspiration for 
the concept of Emission Control Areas, sometimes known as 
ECAs. More rigorous limits on ship emissions have been 
implemented in some places, including the Baltic and North 
Seas. Some laws encourage the deployment of emission-
reduction technologies or the use of cleaner fuels. A 
worldwide sulfur limitation was adopted in 2020 as part of 
MARPOL Annex VI. This cap is designed to limit the amount 
of sulfur in marine fuels to 50%. The use of low-sulfur fuels 
or the deployment of exhaust gas cleaning equipment, also 
referred to as scrubbers, was encouraged due to this event, 
which constituted a significant milestone in reducing sulfur 
dioxide emissions [84]–[86].  

The Initial Greenhouse Gas (GHG) Strategy was 
implemented by the International Maritime Organization 
(IMO) in 2018. The goal of this plan is to reduce the emissions 

of greenhouse gases that are caused by global shipping. 
Compared to the levels recorded in 2008, the level of 
greenhouse gas emissions from the transportation sector is 
expected to fall by a minimum of fifty percent by the year 
2050. The plan aims to lower the amount of carbon emissions 
produced for each unit of transportation labor. National and 
regional bodies have each developed their own ecologically 
friendly marine regulations in addition to the worldwide 
standards that have been established [87], [88]. Many of these 
programs include incentives for using alternative fuels, 
renewable energy, and technology that are efficient in energy 
consumption. To ensure compliance with environmental rules, 
deploying and adopting innovative technology, such as 
engines that are less harmful to the environment, ballast water 
management systems, and enhanced waste treatment facilities, 
have been essential.  The historical history of green maritime 
legislation illustrates the continual development of the marine 
industry. These regulations are evidence of the industry's 
commitment to minimizing its environmental impact. As a 
result of the persistent efforts to implement sustainable 
practices, the incorporation of alternative fuels, renewable 
energy, and artificial intelligence, as well as the enforcement 
of harsher standards, the marine industry has become more 
environmentally sensitive and efficient [89]–[91]. The policy 
framework for green shipping and its effects is depicted in Fig. 
2.  

 
Fig. 2  Policy framework for green shipping and its effects [92] 

 
The International Maritime Organization (IMO), a 

specialized entity of the United Nations, plays a crucial role 
in creating and enforcing regulations that apply to the marine 
sector globally. Many rules apply to environmentally friendly 
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practices in the maritime industry that are enacted by the 
International Maritime Organization (IMO):  

Annex VI of the MARPOL Convention limits the emission 
of air pollutants from boats. These pollutants include sulfur 
oxides (SOx), nitrogen oxides (NOx), and greenhouse gases 
(GHGs) [93], [94]. It is possible to include artificial 
intelligence in vessel operations to enhance the effectiveness 
of monitoring and controlling compliance with these 
standards. The goal of the Energy Efficiency Existing Ship 
Index (EEXI), which is scheduled to be introduced in 2023, is 
to improve the energy efficiency of ships that are currently in 

service [95]–[97]. Ship operators can maximize their boats' 
performance using artificial intelligence (AI) technologies to 
meet these objectives. 

A framework known as the Carbon Intensity Indicator (CII) 
was put into place by the IMO as a component of their Initial 
GHG Strategy. This project aims to create a meter that can 
measure energy efficiency. Calculating and monitoring the 
CII of a vessel and identifying possible areas for improvement 
may be accomplished with artificial intelligence [86]. The 
different technologies that can be used to improve the green 
maritime sector are depicted in Fig. 3. 

 

 
Fig. 3  Various technologies for improvement of the green maritime sector [98] 

 

 
Fig. 4  The geographic distribution of mean green marine transport efficiency per nation [92] 

 
The European Union (EU) has been at the forefront of 

implementing ecologically friendly maritime rules to cut 
emissions and advance the cause of sustainability. Among the 
topics under the purview of EU regulation are those 
concerning energy efficiency, carbon dioxide emissions, and 
sulfur emissions [88]. Technologies based on artificial 
intelligence (AI) have the potential to assist in achieving and 
exceeding these stringent criteria. The Baltic and North Seas 
are two examples of areas recognized as Emission Control 
Areas (ECAs), designated with more rigorous emission 
regulations. Because ships operating in these locations are 
expected to comply with higher limitations on emissions, the 
utilization of technology driven by artificial intelligence to 

monitor and regulate emissions is becoming increasingly vital 
[99], [100]. 

A significant number of countries have enacted their very 
own laws and regulations concerning emissions, pollution, 
and environmentally responsible shipping operations. The use 
of artificial intelligence is highly advantageous since it 
enables warships to satisfy a wide variety of needs that are 
constantly evolving. The IMO has recognized the need to 
address cybersecurity concerns in this age of digitalization. 
One of the most critical aspects of the digitization of marine 
operations is using artificial intelligence (AI). It aims to 
strengthen cybersecurity procedures and protect boats from 
potential cyber hazards. Due to the growing popularity of 
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autonomous shipping, efforts are being made to build 
worldwide standards and laws that will ensure the safe and 
environmentally responsible use of AI-driven autonomous 
boats. These standards and rules are being developed in 
response to the growing demand for autonomous shipping 

[101], [102]. The geographic distribution of mean green 
marine transport efficiency per nation is depicted in Fig. 4. A 
flow chart of the ML application process is described in Fig. 
5. At the same time, Table 1 is a summary list of recent studies 
using AI & ML for green shipping.  

 
 

 
Fig. 5  Flow chart of ML application process [103] 

TABLE I 
RECENT STUDIES USING AI & ML FOR GREEN SHIPPING 

 Objectives ML / AI used Main outcomes Source 
Model forecasting of sulfur 
dioxide emission from shipping 

Multiple linear regression (MLR), Automated 
machine learning regressor (AutoML), Gradient 
descent, and Artificial neural network 

The AutoML was superior in data prediction for SO2 
emission. 

[17] 

Prediction model for onboard 
photovoltaic system 

Extreme learning machines (ELM), kernel 
density estimation (KDE), and K-mean 
clustering 

ELM could provide at least 5.6% more precise 
predictions 

[104] 

Machine learning-based 
prediction of ship’s performance 

Principal component regression, Partial least 
square regression, probabilistic ANN, and ANN 

The ML techniques have demonstrated effective 
performance in simulating ship hydrodynamic 
conditions, with the probabilistic ANN model being the 
most effective. 

[105] 

Prediction optimization of trim 
in case of container ship 

ANN, Decision tree (DT Random Forest (RF), 
and K-nearest neighbor 

The prediction precision of RF was the best, with 
88.89% accuracy. 

[106] 

ML with physics interpretation 
for ship speed prediction 

eXtreme Gradient Boosting (XGBoost) and 
Physics-informed neural networks (PINNs) 

ML may improve speed prediction by 30% when 
enough data is available for modeling. 

[107] 

Model-prediction of 
Manoeuvring emissions 

Multiple machine learning techniques A maneuvering emission impact forecasting model for 
pilots is constructed with a 73% consistency. 

[108] 

ML-based prediction of ship’s 
trajectory 

Gaussian process regression (GPR) The proposed ML-based methodology could estimate 
the probabilistic pattern of grounding risk and ship 
dynamics. 

[109] 
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 Objectives ML / AI used Main outcomes Source 
Model prediction of ship 
performance with tree-based 
methods 

RF, bagging, and boosting Tree-based modeling offers significant advantages since 
it delivers excellent accuracy and simplicity of 
comprehension. 

[9] 

Hybrid propeller-engine 
diagram for green shipping 

Multiple ML approaches The groundwork for sophisticated data analytics will be 
used to determine optimal vessel navigation. 

[110] 

 
AI integration within the framework of these policies and 

regulations involves the utilization of AI for:  
 Strategies for monitoring and reducing emissions.  
 Implementing predictive maintenance to optimize 

vessel performance and minimize operational 
interruptions.  

 Optimization of vessel routes to achieve fuel efficiency 
and minimize emissions.  

 Improved safety is achieved by utilizing artificial 
intelligence-powered autonomous navigation systems.  

 The integration of AI in the maritime sector addresses 
environmental concerns and facilitates compliance with 
regulations. Furthermore, it offers potential for 
enhancing the industry's sustainability, efficiency, and 
safety.    

 AI's capacity to foster innovation and promote 
environmental responsibility in maritime operations is 
increasingly acknowledged by policymakers and 
stakeholders. 

B. Method 

1) Analytical description 

Prescribing the main terms and definitions employed 
during the study is essential.  The “Lane” here denotes the 
entire route of a ship transporting cargo via various ports. The 
term “Route” represents the distance between two fixed ports. 
Each route has several alternatives, such as curved or straight. 
The term “Stretch” means that a route can be broken into 
many lengths based on the region established by the policy. 
For example, ECA's policy divides the sea surface into two 
areas: within the emission control region and outside the 
control area. There is a path both inside and outside of the 
emission control area. The route can then be broken into many 
sections along the boundary of the emission control region. A 
route can be split into many segments of a defined length. In 
other words, every section is the same length. To be sure, 
repeatedly changing speed or heading harms the ship's 
operation and may increase fuel consumption and emissions. 
Thus, ships move in a straight line with a constant velocity 
throughout each segment [111]. In the present study, the ship's 
sailing speed is initially optimized through the joint 
application of virtual arrival methods with a carbon tax, 
emission control area (ECA), and Vessel Speed Reduction 
Incentive Program (VSRIP). This technique presupposes that 
the departure and arrival ports are known and that the route 
has been planned. The speed model's optimization aim is to 
minimize overall cost. The primary purpose of this section is 
to determine the objective function. 

Fuel expenditures are incurred on all ship journeys. Unit 
costs vary depending on the kind of fuel. Ships utilize marine 
gas oil (MGO) throughout ECAs and low sulfur fuel oil 
(LSFO) outside ECAs for their principal engine fuel. The 
sulfur content of gasoline used by auxiliary engines is often 
relatively low, and its unit price is comparable to MGO.c In 
summary, fuel costs are stated as [111], [112]: 

Fuel cost = 

∑ ∆�� ���	
���
� + �1 −  �
��� + ��	� ��     �
�� (1)

 

Eq. (2) represents the cost that was incurred as a result of 
the carbon tax measures:  

Cost of carbon = 

���  ��� !  " Δ�

�


��
�	
 � +  	�� −  $��� . &'��� ( 

(2) 
 
The amount of time spent sailing determines a portion of 

the cost. To begin, ships are rented and given a fee 
proportional to their use time. In the second place, the 
navigation of vessels requires both labor and equipment as 
essential components. The costs consist of the salary of the 
staff members who are on board, the expenses that are 
essential for living, the fees for maintaining the equipment, 
the depreciation charge, and the insurance payments. It is 
calculated with Eq. (3):  

Cost time = ) ∑ Δ�
�
��  (3) 

Cost of incentive for speed reduction of the ship needs that 
the shipping company is entitled to monetary compensation 
by the VSRIP if the vessel deviates from the designated speed 
limit within VSRZs in the vicinity of the departure port A and 
the arrival port B. By diminishing the overall expenses, this 
component of the cost acquires a negative value. That is 
articulated as: 

Cost owing to VSRIP = 
− ∑ *+,-. /0
 < 0�2�+,-.�3,5  . 6+,-. . 7

+,-. 
(4) 

While a ship is cruising, fuel oil produces SOx and CO2. 
Here's why SOx and CO2 are used to investigate emission 
reductions. CO2 emissions contribute to global warming, 
while pollutant SOx affect the environment. SOx and CO2 

emissions are the primary targets of emission reduction 
measures. In this research, ECAs aim to decrease SOx 
emissions, while carbon pricing schemes aim to reduce CO2 
emissions. Emission levels are determined by the ship's power 
and gas emission characteristics. This is mentioned in [113]:  

89: =  " Δ�

�


��
<	
�  =�
>:� +  �1 −  �
�>:�  ?
+  	�>:�  @  

 

(5) 

In this case, j denotes the type of gas, j = SOx or CO2. Eq. 
(5) is used to compute gas emissions once the sailing speed 
has been calculated to reduce the overall cost under various 
policies and techniques.  

In the above discussion, ‘i' denotes the segmental index, ‘n’ 
represents the total number of segments in a single route, va is 
the threshold of sailing speed, vi denotes the segmental speed 
of a ship, vmax is the peak speed of the boat, Δti is segmental 
sailing time, T denotes ship’s total sailing time on the whole 
route, ΔT represents the time delay in implementing the 

6



Virtual Arrival strategy. αi is either 1 or 0 for emission control 
areas and outside emission control areas, respectively.  τm 
denotes fuel consumption for the main engine's fuel 
consumption in ton/kW·h while τa denotes fuel consumption 
in the case of the auxiliary engine's fuel consumption in 
ton/kW·h. WL denotes the cost of marine fuel in dollars per 
ton, while WH represents the cost of low-sulfur fuel oil in 
dollars per ton.  

2) Data analysis 

 The data collected from the ship’s logbook through 
several trips was used as a case study. The data was cleaned 
and arranged, and descriptive statistical analysis was 
conducted [114], [115]. The descriptive statistics of the data 
are listed in Table 2. The descriptive statistical analysis shows 
that the mean value for Distance is 824.783 nm, the standard 
deviation is 836.41 nm, and the range of values for Distance 
is from 0 nm to 6870.7 nm. The average number of hours daily 
is 78.828 hours, and the standard deviation is 96.61 hours. 

TABLE II 
DESCRIPTIVE STATISTICAL ANALYSIS 

 Distance, 

nm 

Time, 

Hr 

LFO, 

Gallons 

DO, 

Gallons 

count 100 100 100 100 

mean 824.783 78.828 66.6992 1.48816 

std 836.41 96.61 102.84 4.96 

min 0 0 12.955 0.029 

25% 461.125 44.9 32.74375 0.09425 

50% 653.6 64.05 42.639 0.197 

75% 864.925 80.875 59.99075 2.0265 

max 6870.7 717 839.884 48.551 

Kurtosis 29.22 32.15 34.97 84.23 
Skewnes
s 

4.67 5.343 5.45 8.84 

 
The range of time is from 0 hours to 717 hours. LFO has a 

mean of 66.6992 gallons, a standard deviation of 102.84 
gallons, and a range from 12.955 gallons to 839.884 gallons. 
The DO has a mean value of 1.48816 gallons, with a standard 
deviation of 4.96. The DO may range anywhere from 0.029 
gallons to 48.551 gallons. Given that the kurtosis values for 
Distance, Time, LFO, and DO are 29.22, 32.15, 34.97, and 
84.23, respectively, these variables' probability distributions 
are tail-like. The skewness values for Distance, Time, LFO, 
and DO are 4.67, 5.343, 5.45, and 8.84, respectively, 
illustrating the level of asymmetry around their respective 
means. The presence of a positive skew indicates a longer 
right tail, while the presence of a negative skew indicates a 
longer left tail. Higher absolute values indicate a higher 
deviation from the mean. 

3) Machine learning for model-prediction: 

Extreme Gradient Boosting, or XGBoost, is a robust and 
frequently used machine learning method well-known for its 
effectiveness and simplicity in managing structured and 
tabular data. It is a member of the family of methods known 
as ensemble learning, and it works by iteratively constructing 
an ensemble of weak learners, often decision trees, to generate 
a robust predictive model. Using regularization to minimize 
overfitting and the minimization of a particular loss function, 
XGBoost can perform very well in regression and 
classification exercises. Gradient boosting, which 

successively corrects mistakes caused by earlier models, and 
approximation tree learning, which accelerates training by 
creating trees level-wise, are two of its main properties. Both 
of these elements are among its most essential characteristics. 
The success of XGBoost may be attributed to its capacity to 
generate very accurate predictions and its adaptability in 
various areas [116], [117]. As a result, it is quickly becoming 
the tool preferred by data scientists and machine learning 
practitioners. The following is the procedure followed:  

If the training data set is defined as: 

A =  ��B
, C
 ��
���  (6) 

In this case, the is feature vector while C
  denotes the 
corresponding label for ith sample.  

The objective of XGBoost is to learn the additive ensemble 
of weak learners  

D �B� =  ∑ EF�B�GF��  ; herein, each denotes a 
regression tree.  

The objective function of XGBoost is given as: 

 HI =  " J �C

�


��
, C⏞
� +  " Ω�EF�G

F��
  (7) 

Herein, J�C
 , C
⏞ �  the loss function is the actual value 
while denoting the predicted value.  The model is trained 
repeatedly by introducing weak learners into the ensemble. In 
each cycle, a new regression tree is trained with the aim of 
minimizing the following objective function: 

 HIF =  " J �C

�


��
, C⏞


.� + " Ω�E
� +
.


��
 $. &

+ 1
2  N " O:!

)

:��
  

(8) 

In this expression, T denotes the number of leaves and N 
represents the regularization term defining the complexity of 
the tree. Following training, the final prediction for a fresh 
sample x is derived by adding the forecasts of all regression 
trees in the ensemble: herein, the forecast of the kth tree.  

III. RESULTS AND DISCUSSION 

A. Results 

1) Preprocessing  

Data preparation, which includes developing correlation 
heatmaps, ensures analytical integrity, trustworthiness, and 
efficacy. These processes are critical to research and analysis 
for the following reasons. Correlation heatmaps demonstrate 
the correlations between dataset variables. They let 
researchers determine how variables interact, whether they 
are positively or negatively related, and how much. This 
information is essential for choosing model predictors and 
identifying multicollinearity concerns. Identifying strong 
connections might help you choose features by reducing 
duplicate data points irrelevant to the investigation. Fig. 6 
displays the correlation heatmap for the research data.  The 
data is about green shipping using a mix of low-sulfur oil 
(LSO) and diesel oil (DO).  
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Fig. 6  Correlational heatmap 

2) Model-prediction  

The results of the experiments that were carried out to 
demonstrate the prediction capabilities of the machine 
learning model XGBoost on ship fuel consumption data are 
shown in this part of the findings. In this section, the model 
development process is broken down in great depth, and a 
comprehensive analysis of the advantages and disadvantages 
of each model is presented. The prediction model was 
developed using a systematic process comprising data 
preparation, feature engineering, model selection, 
hyperparameter tuning, and rigorous evaluation. This method 
was followed for every one of the models. Ship-related data, 
such as the distance traveled by the vessel, the time it took, 
and the amount of fuel used in the past, was gathered and 
analyzed for training purposes. To consider the time 
dependency, the feature engineering process included the 
development of lag features and the data standardization to 
achieve consistent scaling, as shown in Fig. 7.  

 
(a)  

(b) 
Fig. 7  XGBoost-based model’s actual vs predicted (a) LFO data (b) DO data 

 
R-squared, Mean Squared Error (MSE), and Mean 

Absolute Error (MAE) are three metrics that may describe the 
LSO and DO models based on XGBoost. These metrics can 
be utilized for both the training and test datasets. Beginning 
with the LSO model, it was observed that the R-squared 
values are high in both the training dataset and the test dataset. 
This indicates a significant connection between the predicted 
values of the fuel-related variable and the actual values of the 
variable. The value of R squared in the training dataset is 0.96, 
which indicates that the model can explain about 96% of the 
variation in the variable that is associated with fuel. Similarly, 
the R-squared score in the test dataset is slightly lower at 0.92, 
which indicates that the model continues to perform well on 
data it has not seen before. There are quite a few mistakes 
between the predicted values and those observed, as shown by 
the MSE values for LSO, which are 498.55 for the training 
dataset and 396.26 for the test dataset. The MAE values for 
the training dataset are 6.59, whereas the MAE values for the 
test dataset are 9.68. This further substantiates the model's 
accuracy in predicting fuel-related variables when using low-
sulfur fuel oil.  

Moving on to the DO model, their R-squared values were 
even higher than those of LSO. This is especially true in the 
training dataset, where it reaches 0.9998, which indicates that 
there is a robust correlation between the values that were 
predicted and the values that were observed. The R-squared 
value, on the other hand, lowers to 0.8006 in the test dataset, 
which indicates that the model's performance on data that has 
not yet been seen has somewhat decreased but has still 
retained a pretty high degree of correlation. Within the 
training dataset, the MSE values for DO are very near zero, 
indicating very few mistakes between the predicted and actual 
values. Furthermore, the MSE value in the test dataset is 
0.0045, which is also considered extremely low. While the 
MAE values in the training dataset are near zero (0.0016), 
they are reasonably tiny in the test dataset (0.0536), 
demonstrating that the model accurately predicts fuel-related 
variables when diesel oil or distillate fuel oil is used. When 
employed as predictors for the fuel-related variable, both 
kinds of ship fuels, LSO and DO, have solid correlations and 
low prediction errors. The high R-squared values and the low 
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MSE and MAE values across the training and test datasets 
demonstrate this. 

B. Policy suggestions 

1) Environmental implications 

The marine sector may see significant environmental 
implications, good and bad, due to adopting technology such 
as artificial intelligence (AI), renewable energy sources, and 
alternative fuels. An analysis of these effects is presented as 
follows:  

GHG reduction: One of the most important advantages of 
implementing alternative fuels and renewable energy sources 
in the marine sector is the massive decrease in greenhouse gas 
emissions. This is one of the critical benefits of this adoption. 
Traditional marine fuels, such as heavy fuel oil, are 
responsible for the emission of significant quantities of certain 
pollutants, including carbon dioxide (CO2), sulfur oxides 
(SOx), and nitrogen oxides (NOx) [118], [119]. The adoption 
of more environmentally friendly alternatives, such as 
liquefied natural gas (LNG), hydrogen, or biofuels, has the 
potential to reduce these emissions significantly, therefore 
contributing to the mitigation of climate change and the 
improvement of air quality [120], [121].  

Marine pollution mitigation: Traditional marine fuels 
contribute to air pollution and carry concerns of oil spills and 
water contamination. Air pollution is a significant contributor 
to marine pollution. Alternative fuels, such as LNG, offer a 
decreased risk of leaks and can contribute to reducing 
pollution in maritime environments. A further reduction in 
dependency on fossil fuels and the danger of oil spills can be 
achieved by using renewable energy sources such as wind and 
solar power to provide auxiliary power [122], [123].  

Energy efficiency enhancement: Artificial intelligence 
technology may be utilized to optimize vessel operations, 
resulting in enhanced energy efficiency and decreased fuel 
usage and consumption. Intelligent systems powered by 
artificial intelligence can optimize ship routes, modify speeds 
based on weather conditions, and operate onboard systems 
more effectively, ultimately resulting in substantial fuel 
savings and emissions reductions [124], [125].  

Impact on marine ecosystem: Despite the potential of 
alternative fuels and renewable energy sources to lessen the 
amount of pollution caused by maritime activities, 
implementing these technologies may have an indirect effect 
on marine ecosystems. The manufacturing and distributing 
biofuels and installing offshore wind farms are two examples 
of activities that can potentially damage aquatic ecosystems 
and habitats. Careful planning and extensive environmental 
impact studies are required to minimize these consequences 
and ensure the deployment of these technologies in a 
sustainable manner [126], [127].  

Consumption of resources: The creation and deployment of 
artificial intelligence technology, alternative fuels, and 
infrastructure for renewable energy all demand significant 
resources, such as land, water, and materials. Depending on 
how these resources are obtained and maintained, 
environmental implications may be connected with them. 
These impacts may include the loss of habitats, the use of 
water, and increased carbon emissions related to 
manufacturing operations. To lessen the severity of these 
effects, it is necessary to encourage sustainable methods in the 

extraction, production, and disposal of resources and waste 
[87], [91].  

Long-term sustainability: In the framework of long-term 
sustainability, it is necessary to take into consideration the 
environmental advantages that would result from the marine 
industry's use of alternative fuels, various forms of renewable 
energy, and artificial intelligence. The widespread adoption 
of these technologies should align with broader sustainability 
goals, such as preserving biodiversity, protecting ecosystems, 
and equitable distribution of environmental benefits and 
burdens. Although these technologies present opportunities to 
reduce environmental harm in the short term, their widespread 
adoption should align with these broader sustainability goals 
[128], [129]. 

 Using alternative fuels, renewable energy sources, and 
artificial intelligence technologies in the maritime sector can 
drastically cut greenhouse gas emissions, lessen marine 
pollution, and increase energy efficiency. However, to 
guarantee that these technologies effectively contribute to 
achieving long-term sustainability objectives, seriously 
considering the potential environmental repercussions is 
necessary. 

2) Economic implications  

Cost Savings: Artificial intelligence technologies can 
potentially optimize various nautical activities, resulting in 
business cost savings. As an illustration, predictive 
maintenance systems powered by artificial intelligence can 
assist in predicting the breakdown of equipment, enabling 
prompt repairs and reducing downtime. Similarly, AI-driven 
route optimization algorithms can minimize the amount of 
fuel consumed and the duration of voyages, resulting in 
cheaper operational costs for shipping corporations [82], 
[130].  

Efficiency enhancements: Artificial intelligence can 
improve operational efficiency throughout the marine supply 
chain. AI technologies can potentially enhance overall 
efficiency and resource utilization, which may result in cost 
savings for enterprises. This can be accomplished by 
automating repetitive jobs, optimizing logistics and inventory 
management, and expediting cargo handling procedures [131], 
[132].  

Market opportunities: The implementation of artificial 
intelligence in the marine sector has the potential to provide 
new income streams and market opportunities. There is a 
possibility that businesses that utilize artificial intelligence for 
predictive analytics, autonomous navigation, or intelligent 
port management may gain a competitive advantage and 
attract new consumers who are looking for creative and 
efficient marine solutions [133], [134].  

Reduction of risk: Risk management systems driven by 
artificial intelligence can analyze vast volumes of data to 
detect possible safety hazards, security threats, and 
operational risks. Marine firms can reduce disruptions, avoid 
costly accidents, and preserve regulatory compliance by 
taking proactive measures to handle these risks. This will 
reduce financial obligations and insurance premiums [135], 
[136].  

3) Society impacts 

Job creation: Artificial intelligence has the potential to 
generate new employment possibilities, even though there are 
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worries over the displacement of people in the marine sector 
by automation. There will be an increase in the need for 
skilled individuals in industries such as data science, software 
development, robotics, and AI system maintenance due to the 
increasing number of organizations investing in artificial 
intelligence technology. Additionally, breakthroughs that are 
driven by artificial intelligence have the potential to 
encourage employment development in similar areas, such as 
engineering, technology, and logistics [137], [138].  

Better health results: Artificial intelligence applications in 
the marine industry have the potential to improve crew safety 
and well-being, which in turn can contribute to better health 
results. For instance, through predictive analytics driven by 
artificial intelligence, it is possible to identify potential health 
problems among crew members, enabling preemptive 
interventions and preventative actions. Additionally, 
autonomous and remotely operated vessels equipped with 
collision avoidance systems based on artificial intelligence 
can potentially lower the likelihood of accidents occurring at 
sea, therefore protecting the lives and health of maritime 
personnel [137], [139].  

Environmental benefits: When it comes to marine 
operations, using artificial intelligence may result in 
significant environmental benefits that, in turn, improve 
social well-being. Although these benefits are not directly tied 
to economic gains, they are still important. Innovations in the 
maritime industry driven by artificial intelligence assist in 
preserving ecosystems, maintaining natural resources, and 
protecting the health of populations that rely on marine 
ecosystems for their sustenance and happiness. These 
innovations help reduce greenhouse gas emissions, mitigate 
marine pollution, and promote sustainable practices [78], 
[140].  

In conclusion, AI provides various economic benefits, such 
as cost reductions, increases in efficiency, and possibilities in 
the market. Additionally, it delivers social benefits, such as 
creating jobs and improved health outcomes for marine 
workers and communities. To ensure that the implementation 
of artificial intelligence in the marine sector has the greatest 

possible good influence on society, addressing potential 
issues such as the displacement of workforces and ethical 
considerations is vital.  

4) Challenges and barriers 

Putting into practice environmentally friendly policies and 
artificial intelligence solutions in the marine sector is met with 
several hurdles and impediments, which may be broken down 
into four categories: technological, regulatory, economic, and 
cultural. A summary in this regard is depicted in Fig. 8. 

Technological obstacles: 
 The process of retrofitting older vessels with 

environmentally friendly technologies or adopting 
artificial intelligence solutions can be technically 
demanding and expensive simultaneously. Because of 
this, it could be necessary to make considerable 
adjustments to the infrastructure and systems on board.  

 The importance of ensuring the dependability and 
safety of artificial intelligence (AI) systems and 
environmentally friendly technology in marine 
operations cannot be overstated. Accidents or 
disruptions in operations might be caused by technical 
faults or malfunctions, which would pose a threat to the 
safety of the crew as well as the environmental 
sustainability of the environment.  

 Artificial intelligence systems depend on having access 
to vast amounts of high-quality data to train and make 
decisions. Interoperability problems and data silos 
within the marine sector, on the other hand, might be 
obstacles to the successful adoption of AI-driven 
solutions 

Regulatory obstacles:  
 Maritime stakeholders must comply with green policies 

and regulations to reduce emissions and promote 
sustainable practices. These policies and laws place 
compliance duties on maritime stakeholders. 
Implementing these requirements may require 
substantial financial investments in technological 
improvements and operational modifications. 

 

 
Fig. 8  Summary of challenges and opportunities [98] 
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 Regulation uncertainty: The rapid growth of artificial 

intelligence and environmentally friendly technology 
presents regulatory organizations with difficulty in 
defining clear and consistent standards. Regulatory 
ambiguity can create obstacles that prevent innovation 
and investment in environmentally friendly solutions.  

 International Coordination Due to the maritime 
industry's global nature, multiple stakeholders, such as 
governments, international organizations, and industry 
associations, must coordinate efforts to harmonize 
regulatory frameworks and guarantee that 
environmental and safety standards are consistently 
enforced.  

Economic challenges:  
 The implementation of green policies and artificial 

intelligence solutions sometimes necessitates 
considerable initial investments. This may discourage 
specific marine organizations, tiny and medium-sized 
enterprises (SMEs), from embracing these technologies.  

 Evaluating the long-term economic advantages of 
green technologies and artificial intelligence solutions 
can be difficult owing to the uncertainties surrounding 
fuel pricing, improvements in regulatory policies, and 
technological breakthroughs. Without clear proof of 
return on investment, businesses could hesitate to 
invest.  

 It may be difficult to obtain finance for artificial 
intelligence and green projects, particularly for small 
and medium-sized enterprises (SMEs) and businesses 
that operate in emerging countries. To encourage the 
widespread adoption of environmentally friendly and 
technology-driven solutions in the marine industry, it is 
vital to address the limits that may be imposed by 
funding.  

Organizational and cultural structure:  
 The adoption of green policies and artificial 

intelligence solutions can be hampered by resistance to 
change, which can be considered cultural opposition 
inside marine companies and conventional views 
toward innovation and sustainability. To successfully 
overcome opposition to change, leadership must 
demonstrate commitment, employees must be trained, 
and stakeholders must be engaged.  

 Data analytics, machine learning, and cybersecurity are 
all areas in which specialist expertise is required to 
implement artificial intelligence solutions in the marine 
business successfully. To guarantee the effective 
deployment and exploitation of artificial intelligence 
technologies, it is vital to address the skills gap by 
implementing education and training programs.  

 Collaboration across stakeholders: Effective 
collaboration across a wide range of stakeholders is 
required to successfully implement green policies and 
artificial intelligence solutions. These stakeholders 
include shipowners, operators, regulators, technology 
suppliers, and research institutes. Establishing trust and 
cultivating relationships among various stakeholders is 
paramount to overcome obstacles and propel collective 
action toward sustainability and innovation.  

In conclusion, to overcome the issues and hurdles that the 
maritime sector is encountering when attempting to 
implement green policies and AI solutions, it is necessary to 
take a multidimensional strategy that includes technology 
innovation, legislative reform, economic incentives, and 
cultural transformation. It is vital to collaborate among 
stakeholders and take proactive actions to overcome technical, 
regulatory, financial, and organizational constraints to 
achieve the full potential of technology-driven solutions that 
are sustainable and environmentally friendly in the marine 
industry. 

5) Policy recommendations for promoting green 

maritime practices and integrating AI solutions 

Establish clear regulatory frameworks: 
 To encourage the marine sector to use environmentally 

friendly technology and artificial intelligence solutions, 
regulatory frameworks that are both comprehensive 
and uniform should be developed.  

 To drive decarbonization activities effectively, it is 
necessary to establish emission reduction objectives 
and put environmental solid regulations in place, such 
as imposing limits on sulfur and nitrogen oxide 
emissions.  

 Legislative incentives should be provided to stimulate 
investment in environmentally friendly technology and 
AI-driven efficiency gains. These incentives might be 
tax breaks, subsidies, or carbon trading programs.  

Investment in research and development: 
 Funding should be allocated for research and 

development projects that aim to enhance artificial 
intelligence solutions and environmentally friendly 
technology for the marine industry.  

 To speed up innovation in alternative fuels, 
autonomous shipping, and predictive maintenance, it is 
essential to encourage collaboration between industry 
players, academic institutions, and research groups.  

Collaborative learning and development of capabilities: 
 to enhance the skills and capacities of marine 

professionals in artificial intelligence, data analytics, 
and sustainability, it is necessary to establish training 
programs and platforms for knowledge sharing.  

 Make sure that there is a steady supply of qualified 
individuals for the marine sector by providing financial 
assistance to workforce development projects and 
educational institutions that offer courses in disciplines 
relevant to the industry.  

Encourage public-private partnerships: 
 The development and implementation of 

environmentally friendly marine solutions should be 
facilitated by public-private partnerships (PPPs), which 
should encourage collaboration between governments, 
industry participants, and technology suppliers.  

 To encourage the adoption of AI-driven technologies 
and best practices, it is necessary to establish platforms 
for sharing information and cooperation. Some 
examples of such platforms should include industry 
consortia, innovation centers, and demonstration 
projects.  
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Facilitate the exchange of Information and interoperability: 
 Establishing standards and procedures for collecting, 

storing, and exchanging data is a great way to 
encourage data sharing and interoperability across 
several stakeholders in the marine industry.  

 Create frameworks that will allow for the exchange of 
anonymized data for the sake of research while at the 
same time preserving sensitive business information 
and maintaining the privacy and security of data.  

Financial incentives and support mechanisms: 
 The use of environmentally friendly technology and 

artificial intelligence solutions by marine firms should 
be supported by providing financial incentives such as 
grants, loans with low interest rates, and investment tax 
credits. 

 To finance sustainability initiatives and technological 
improvements in the marine industry, green financing 
methods should be established. Some examples of such 
mechanisms are green bonds and revolving funds.  

Promote international collaboration and knowledge 
exchange: 

 Multilateral forums, such as the International Maritime 
Organization (IMO) and regional maritime 
organizations, should be utilized to facilitate 
international collaboration and the exchange of 
information.  

 To promote the worldwide shift towards 
environmentally responsible and technology-driven 
marine activities, sharing best practices, lessons learned, 
and newly developed technical advances is essential. In 
addition, it should enhance students' and learners' 
awareness of the importance of protecting the 
environment [141]. 

Monitoring and evaluating progress: 
 Establish systems for monitoring and assessing the 

application of green marine policies and artificial 
intelligence solutions. These mechanisms should 
include the tracking of emission reductions, 
improvements in energy efficiency, and the deployment 
of technology [142].  

 To ensure that regulatory frameworks and policy 
measures are successful, identifying areas in which 
they may be improved, and adapting to changing 
technical and market trends, it is essential to conduct 
periodic reviews.  

Implementing these policy proposals will enable 
policymakers to create an atmosphere favorable to including 
artificial intelligence solutions and promoting 
environmentally friendly maritime practices. This 
environment will be conducive to the development of 
ecologically friendly maritime practices. As a consequence of 
this, the marine sector will be able to experience sustainable 
expansion and innovation while also addressing concerns 
regarding the environment. 

6) Need for incentives, subsidies, and regulatory 

frameworks that consider AI 

To speed the adoption of technology-driven solutions and 
environmentally responsible practices, it is vital to 
incorporate regulatory frameworks, incentives, and subsidies 
that consider artificial intelligence in the marine industry. To 

facilitate the incorporation of AI, these steps can be adapted 
in the following manner:  

Financial incentives for the implementation of AI: 
 Provide marine enterprises investing in artificial 

intelligence technology with financial incentives, such 
as grants, subsidies, or tax credits, that are expressly 
targeted toward them. 

 It would be beneficial to provide money for pilot 
projects and demonstrations demonstrating artificial 
intelligence's advantages in boosting efficiency, safety, 
and environmental performance within the marine 
industry.  

 Establish incentives that are based on performance and 
are related to outcomes that are driven by artificial 
intelligence, such as increases in fuel economy, 
reductions in emissions, or savings in operating costs.  

Support for research and development via subsidies: 
 Allocate subsidies and research grants to assist research 

and development efforts focused on creating artificial 
intelligence solutions suited to the marine sector's 
specific difficulties and requirements.  

 Encourage collaboration between public research 
organizations, universities, and entities from the 
business sector through research partnerships that are 
financially supported to enhance artificial intelligence 
applications in marine operations. 

Frameworks for the regulation of Artificial Intelligence: 
 To address the ethical, safety, and liability problems 

that are linked with the use of artificial intelligence in 
marine operations, regulatory frameworks should be 
developed. 

 To guarantee that artificial intelligence technologies are 
used responsibly within the maritime sector, it is 
necessary to establish principles for AI governance. 
These guidelines should include algorithm 
transparency, data privacy, cybersecurity, and 
accountability criteria.  

 To facilitate the worldwide adoption of AI-driven 
solutions in marine shipping, it is essential to 
collaborate with international organizations and 
industry players to unify artificial intelligence rules 
across different jurisdictions.  

Developing capabilities and providing training programs: 
 Training programs and capacity-building projects 

centered on developing artificial intelligence 
capabilities should be made available to marine 
professionals such as ship operators, engineers, and 
data analysts [143], [144].  

 For marine enterprises engaging in staff training and 
upskilling programs connected to artificial intelligence 
technology and data analytics, provide financial help 
through subsidies or tuition aid.  

 Work with educational institutions and training 
providers to produce customized training programs and 
certification courses specifically designed to meet the 
artificial intelligence requirements of the marine sector 
[145], [146]. In addition,  

Innovation in Artificial Intelligence through public-private 
partnerships: 

 To co-fund artificial intelligence (AI) innovation 
initiatives and technology pilots that solve critical 
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difficulties in marine transportation, such as 
autonomous navigation, predictive maintenance, and 
emissions monitoring, it is highly recommended that 
public-private partnerships (PPPs) be facilitated.  

 To make the most of the aggregate experience and 
resources available, it is essential to encourage 
collaboration between government agencies, industry 
groups, technology suppliers, and academic institutions 
to create artificial intelligence solutions for the marine 
industry toward the goals of era 4.0 and 5.0 for 
transportation sector [147], [148].  

To prototype and verify novel artificial intelligence 
applications in real-world marine contexts, it is essential to 
establish innovation clusters or testbeds where maritime 
enterprises may work with artificial intelligence startups and 
researchers. To encourage investment, innovation, and 
collaboration within the maritime industry, policymakers can 
incorporate incentives, subsidies, and regulatory frameworks 
specifically designed to consider artificial intelligence [149], 
[150]. This will ultimately lead to adopting AI-driven 
solutions that improve maritime operations' sustainability, 
efficiency, and safety.  

IV. CONCLUSION 

In conclusion, our investigation sheds light on the 
significant part that artificial intelligence plays in facilitating 
the shift to environmentally responsible practices in the 
marine industry, in conjunction with using alternative fuels 
and renewable energy sources. 

 AI facilitates a shift to environmentally responsible 
practices in the marine industry. 

 Utilizing predictive maintenance systems, route 
optimization algorithms, and autonomous shipping 
capabilities. 

 Enhancing decision-making processes and vessel 
operations and reducing pollutants and fuel 
consumption. 

 Recommendations for public policy include financial 
incentives, legal frameworks, and capacity-building 
activities. 

 Urgent need for action to address climate change and 
environmental deterioration in the marine industry. 

 Shifting to alternate fuels, renewable energy, and AI to 
reduce environmental impact and pollution. 

 Future success requires a holistic strategy incorporating 
AI, alternative fuels, and renewable energy. 

 Policymakers should prioritize AI research, encourage 
stakeholder cooperation, and create regulatory settings 
conducive to collaboration. 
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