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Abstract— Aerodynamic is a branch of fluid dynamics that evaluates the behavior of airflow and its interaction with moving objects. 

The most important application of aerodynamic is in aerospace engineering, designing and construction of flying objects. Reduction 

of noise emitted by aerodynamic objects is one of the most important challenges in this area and many efforts have been to reduce its 

negative effects. The prediction of noise emitted from these aerodynamic objects is a low-cost and fast approach that can partially 

replace the "fabrication and testing" phase. One of the most common and successful tools in prediction procedures is data mining 

technology. In this paper, the performance of different data mining algorithms such as Random Forest, J48, RBF Network, SVM, 

MLP, Logistic, and Bagging is evaluated in predicting the amount of noise emitted from aerodynamic objects. The experiments are 

conducted on a dataset collected by NASA, which is called "Airfoil Self-Noise". The obtained results illustrate that the proposed 

hybrid model derived from the combination of Random Forest and Bagging algorithms has better performance compared to other 

methods with an accuracy of 77.6% and mean absolute error of 0.2279. 
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I. INTRODUCTION 

Aerodynamics is a branch of the gas dynamics, and in 

general, the fluid dynamics that studies the behavior of the 

airflow and its interaction with moving objects. The solution 

of an aerodynamic problem consists of the calculation of the 

velocity field, pressure, and air temperature around an object. 

For this purpose, the governing equations on fluid flow 

should be solved. Using the obtained solution, it is possible 

to calculate the force and momentum that are applied to the 

body [1].  

The most important application of aerodynamic is in 

aerospace engineering, designing and construction of flying 

objects. Additionally, aerodynamics is used in automotive 

engineering to design an efficient body for the automobiles. 

The structural engineers also use aerodynamics to analyze 

the influence of wind flow on structures such as skyscrapers, 

bridges or towers. Hence, a structure or body that is designed 

and built on the basis of aerodynamic principles and rules 

should withstand the least possible force from the air or fluid 

around it. Furthermore, with the use of aerodynamics, the 

lifting force of the flying object against the gravity of the 

earth can be augmented [2, 3]. 

Many challenges and issues have been raised in this area 

that designers and constructors are trying to solve, among 

them, reduction of noise generated by aerodynamic objects 

to moderate the resulting negative effects can be considered 

as the most important issues. 

Therefore, the determination of the noise levels in 

designed objects is mandatory. Predicting the noise amount 

emitted by these aerodynamic objects is a low-cost and fast 

way that can partly replace the "fabrication and testing" 

phase. Among different methods for prediction, data mining 

is one of the most common and successful tools [3, 4].  

Airfoil self-noise is due to the interaction between an 

airfoil blade and the turbulence produced in its own 

boundary layer and near wake. It is the total noises produced 

when an airfoil encounters smooth nonturbulent inflow [2]. 

In recent years, engineers and scientists have been able to 

reduce aeroacoustic and vibroacoustic noise to such an 

extent that broadband sources are now limiting further noise 

reduction. This is particularly true for technology that 

utilizes airfoils and airfoil-like shapes that generate 

broadband noise at the trailing edge (TE). 

In aerodynamic objects, prediction of TE noise has 

become a permanent challenge for engineers over the past 30 

years due to the complexity of the turbulent fluid flow, 

which is considered as the source of the noise. The complex 

and random nature of turbulence has led to the development 

of methods that have used simplified turbulence models to 

calculate noise.  

 

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION 

 

 

 

VOL 3 (2019) NO 4 
   
e-ISSN : 2549-9904 

ISSN    : 2549-9610   



389 

 

In this paper, the performance and efficiency of different 

data mining algorithms such as Random Forest, J48, RBF 

Network, SVM, MLP Neural Network, Logistic, and 

Bagging are evaluated in predicting the amount of noise 

emitted from aerodynamic objects [5]. 

The rest of this paper is organized as follows. Section II 

presents related work, Airfoil Self-Noise dataset, and the 

proposed model. Section III presents the simulation results. 

Finally, the paper is concluded in Section IV. 

II. MATERIAL AND METHOD 

In this section, some existing works are studied first. Then, 

the Airfoil Self-Noise dataset used in this study is introduced.  

Finally, the proposed model is presented.   

A. Related Work 

In reference [3], a report was presented by NASA, which 

provides a comprehensive review of noise in aerodynamic 

objects as well as its prediction. The prediction methods for 

individual self-noise mechanisms are in fact semi-empirical 

and are based on previous theoretical studies and most 

comprehensive and available self-noise dataset. In this study, 

a series of acoustic and aerodynamic experiments were taken 

from a two-dimensional and three-dimensional aerodynamic 

blade guided in a wind tunnel without reflection. Data were 

collected from the blades of seven NACA 0012 aerodynamic 

devices.  

The key to an accurate TE noise prediction is to estimate 

the turbulence properties correctly. Noise predictions were 

made by Brooks and Hodgson [6] using data obtained from 

simultaneous noise and surface pressure measurements. For 

cases where the exact surface pressure spectrum (i.e. the 

turbulent field) is not known, estimates are used [2] and 

predictions are poor at high frequencies. 

Lutz et al. [7] employed a surface pressure formulation 

with a boundary layer numerical flow simulation to improve 

the estimate of the fluctuating surface pressure spectrum. 

Roger et al. [8] have proposed an extension of Amiet's 

original formulation of trailing-edge noise based on fully 

analytical derivations. Back-Scattering, leading edge 

correction is developed, yielding a modified chordwise 

distribution of the acoustic sources induced by the scattering 

mechanism. 

A neural network prediction approach has been proposed 

to compute self-noise of airfoils typically used in wind 

turbines by Antonio [9]. The neural networks were trained 

using experimental data corresponding to tests of several 

different airfoils over a range of flow conditions.  

The TE noise model for the turbulent boundary layer is 

presented in [10], which is more complicated compared to 

the semi-empirical method [2]. In this model, boundary layer 

parameters are used to estimate TE noise on both sides of an 

aerodynamic object; these parameters are calculated by a 

boundary layer prediction routine called XFOIL. 

Lloyd et al. [11] have developed an immersed boundary 

approach for use with direct numerical simulations (DNS) 

employing high-order accuracy spatial schemes.  

In [12], an investigation of the noise emitted from the 

trailing edge (TE) of a Somers S834 airfoil section with 

advanced experimental and numerical methods is presented. 

In [13], the double spatial derivative of the pressure at the 

source points was calculated and the reciprocal theorem was 

used to determine the tailored Green's function of the body. 

This approach relies on taking the double spatial derivative 

of the volume distribution of acoustic pressures to determine 

the tailored Green's function. Significant errors can be 

introduced by spatial discretization and differentiation on a 

numerical grid 

 In [14], an analytic trailing edge noise model is used to 

determine the unsteady pressure on the blade surface. In [15], 

a method has been developed to predict the self-noise 

generated by a flat plate immersed in low Mach number flow. 

A Reynolds Averaged Navier-Stokes (RANS) simulation is 

performed of the turbulent flow over the flat plate. The 

predicted flow field data, such as mean velocity, turbulent 

kinetic energy, and turbulent dissipation rate, is then 

processed using a statistical noise model and combined with 

a Boundary Element Method (BEM) model of the flat plate 

to predict the far-field sound. 

B. Airfoil Self-Noise Dataset and Pre-Processing 

The dataset used in this research is “Airfoil Self-Noise” [2, 

9], which is collected by NASA. This dataset contains 1502 

samples and 6 attributes with no missing value. The Output 

field or classification variable in this dataset is “Scaled 

sound pressure level”. The attributes of this dataset are: 

1. Frequency, in Hertz. 

2. Angle of attack, in degrees. 

3. Chord length, in meters. 

4. Free-stream velocity, in meters per second. 

5. Suction side displacement thickness, in meters. 

6. Scaled sound pressure level, in decibels. (class 

attribute) 

The essential statistical information about attributes is 

provided in the following; if necessary, the required pre-

processing would be applied on them: 

Frequency: This attribute is numerical and contains 21 

distinct values in the entire dataset with no missing value. 

The vacation range of this attribute is between 200 and 

20000, with the histogram presented in Fig. 1. As shown in 

Fig. 1, most of the samples in this attribute are drawn to the 

value of 200, so it's better to transform it by a simple 

algorithm ln(x+1). Through the use of this function for the 

intended attribute, as shown in Fig. 2, the vacation range 

would be transformed into 5.3 and 9.9. Afterward, by 

applying the desired data mining method and fitting models, 

the outputs are post-processed by the inverse of the ln(x+1) 

function. 

 
Fig. 1. A histogram of attribute "frequency" before pre-processing  
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Angle of attack: This attribute is of numerical type and 

contains 27 distinct values in the entire dataset with no 

missing value. The variation range of this attribute is 

between 0 and 22.2, with the histogram provided in Fig. 3. 

Due to the smooth trend of this graph, there is no need for 

pre-processing operations. 

 
Fig. 2. The histogram of the attribute "frequency" after applying the 

function ln(x+1) 

 
Fig. 3. A histogram of attribute "angle of attack" before pre-processing  

 

Chord length: This attribute is also numerical with six 

distinct values and no missing value. The range of this 

attribute is between 0.025 and 0.305 with the histogram 

depicted in Fig. 4. Due to the smooth trend of this graph, 

there is no need for pre-processing operations. 

 

 
Fig. 4. A histogram of attribute "chord length" before pre-processing  

Free-stream velocity: This attribute is also of numerical 

type with four distinct values and no missing value. For this 

attribute, the variation range is between 31.7 and 71.3 with 

the histogram presented in Fig. 5. As mentioned for the prior 

attribute, pre-processing is not needed due to the smooth 

trend of this graph. 

 
Fig. 5. A histogram of attribute "free-stream velocity" before pre-processing  

 

Suction side displacement thickness: This attribute is also 

numerical and 105 distinct quantities in the entire dataset 

with no missing value. The variation range is between 0 and 

0.058 with the histogram provided in Fig. 6. According to 

the large variation domain of this attribute, pre-processed is 

required. The values of this attribute are placed in 105 

clusters, which reduce the accuracy of classification 

algorithms. On the other hand, the values of this attribute are 

very small decimal amounts (less than 0.058) with the 

precision of 10-7. If we reduce the accuracy of the values to 

10-5, the number of clusters or individual samples will be 

reduced to 78, which will increase the accuracy of the 

classification algorithms. 

 
Fig. 6. A histogram of attribute "suction side displacement thickness" before 

pre-processing  

 

Scaled sound pressure level: This output attribute (class) is 

a numerical type with the large variation range and does not 

has any missing value. Since this attribute is the output and 

the classification algorithms are applied to this attribute, 

some pre-processing operations are required. The variation 

range for this attribute is between 103.38 and 140.987 with 

the histogram of presented in Fig. 7. 

 

 
Fig. 7. A histogram of attribute "scaled sound pressure level" before pre-

processing  

 

In order to apply classification algorithms such as 

Support-Vector Machine (SVM), Bayesian Network, 

Random Forest, Decision Tree and etc. it is required that the 

output attribute is of nominal type, so it should be converted. 

But according to the numerical type of this attribute and 

uniqueness for all samples in the dataset (94% of the values 

are unique), prior to conversion, the grouping should be 

performed so that the number of classes is reduced. A simple 

way is to place adjacent values in a similar group. In this 

research, we use the standard deviation of the output 

attribute, which is equal to 6.899. Hence, the variations 

range, which is between 103.38 and 140.987, is divided to 

the classes with the length of 6.899 and the resulting values 

are fed to the Floor () function to obtain integer output 

values. Finally, six output classes with the histogram given 

in Fig. 8 would be generated. Similarly, in Fig. 9, the 
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histogram of all attributes is depicted in the classified form 

resulted from the pre-processing operation. 

 
Fig. 8. A histogram of attribute "scaled sound pressure level" after pre-

processing  

 

 
Fig. 9. Histogram of all attribute considering the class attribute  

C. The Used Classification Algorithms 

In this section, we introduce the data mining algorithms 

that used to predict the noise level of aerodynamic devices 

[5, 16]: 

Bagging: This algorithm was proposed in 1994 by Leo 

Breiman to improve the classification by combining 

randomly generated training sets. This methodology is a 

meta-algorithm designed to improve the stability and 

accuracy of machine learning algorithms used in statistical 

classification and regression. Variance is reduced and over-

fitting is improved through the use of this algorithm. 

Although this method is used in the decision tree, it can be 

used in any kind of model. In fact, Bagging is a special case 

of model averaging approach. 

Random Forest: Top-down decision trees are one of the 

most commonly used classification techniques, in which the 

samples are classified in such a way that the tree grows from 

the root to the bottom and eventually reaches the leaf nodes. 

The leaves of the decision tree are determined by a class and 

a set of solutions. To classify an input in this tree, the 

algorithm starts from the root and follows the branches 

according to the property of the input to reach a leaf. The 

output of the leaf value is considered as the class of the input 

element. The Random Forest algorithm is an example of 

decision tree algorithms with the advantage of high-

precision classifier as well as conformity with a large 

number of inputs.  

J48: This algorithm is the implementation of the C4.5 

decision tree. In this algorithm, additional grafting branches 

are considered on a tree in a post-processing phase. The 

grafting process tries to capture some of the capabilities of 

ensemble methods such as Bagged and Boosted trees, while 

a single structure can be maintained. This algorithm 

identifies areas that are either empty or only contains 

misleading classified samples and explores another 

(alternative) class. 

RBF Network: It is an artificial neural network that uses 

radial basis functions as activation functions. The output of 

this network is a linear combination of radial base functions 

for input parameters and neurons. This type of network is 

used in the approximation function, time series prediction, 

classification, and control systems, and is referred to as 

radial functions interpolation. 

Logistic: This algorithm is another implementation for 

constructing and using a polynomial logistic regression 

model along with an edge estimator to protect against 

overfitting by penalizing large. 

Multi-Layer Perceptron (MLP): This algorithm is a class 

of feedforward artificial neural network which consists of at 

least three layers of nodes: an input layer, a hidden layer, 

and an output layer. Except for the input nodes, each node is 

a neuron that uses a nonlinear activation function. The MLP 

utilizes a supervised learning technique called 

backpropagation for training. 

BayseNet: The Bayesian classification assigns the 

membership value of each sample to the class with a 

probability, additionally, statistical concepts such as mean, 

standard deviation, or histogram of attributes are used for 

generating law. The Bayesian network is a graphical model 

that expresses the potential relationship between a set of 

variables. The structure of a Bayesian network is a directed 

graph without loops in which nodes represent random 

variables, and its edges represent a one-to-one relationship 

between variables. The implementation of this method is 

very simple and does not require complicated recursive 

parameter estimation procedures. That is, it can be used for a 

large dataset appropriately. It should be noted that this 

algorithm may not be the best possible classifier in a 

particular application, but its robustness and excellent 

performance are assured. 

Self-Organizing Map (SOM): This algorithm is a type of 

neural network model that is trained using unsupervised 

learning. The SOM maps the high-dimensional input vectors 

onto a two-dimensional grid of prototype vectors and orders 

them.  

III. DISCUSSION AND SIMULATION RESULTS  

One of the common tools used for evaluating classification 

algorithms is to employ the confusion matrix. As can be seen 

in Table 1, the confusion matrix includes results of 

predictions of the classifier algorithm in 4 different classes 

including True Positive, False Negative, False Positive and 

True Negative [17]. 

TABLE I 

CONFUSION MATRIX 

Predicted 

O
b

se
rv

ed
  True False 

True TP FN 

False FP TN 

 



392 

 

Considering the confusion matrix, the following measures 

can be defined and evaluated [17]: 

• True Positive refers to the positive samples that were 

correctly labeled by the classifier. 

• True Negative refers to the negative samples that were 

correctly labeled by the classifier. 

• False Positive is an error in data reporting in which a test 

result improperly indicates the presence of a condition, 

such as a disease (the result is positive), when in reality it 

is not present. 

• False Negative is an error in which a test result 

improperly indicates no presence of a condition (the 

result is negative) when in reality it is present. 

• Precision is the fraction of retrieved instances that are 

relevant: 

(1) 
 

• Accuracy is the proportion of true results (both true 

positives and true negatives) among the total number of 

cases examined: 

 

(2) 

 
• Recall is the fraction of relevant instances that are 

retrieved:  

(3) 

 
• F-Measure combines precision and recall (harmonic 

mean): 

(4) 
 

• Root Mean Squared Error (RMSE) is a frequently 

used measure of the differences between values predicted 

by a model or an estimator and the values observed. The 

RMSD represents the square root of the second sample 

moment of the differences between predicted values (pi) 

and observed values (ai) or the quadratic mean of these 

differences. 

(5) 

 
• Mean Absolute Error (MAE) measures how far 

predicted values (pi) are away from observed values (ai). 

(6) 

 
In this research, the Weka tool is used to perform pre-

processing operations and construct the proposed predictive 

models. This software has been developed at Waikato 

University in New Zealand and is an open-source tool 

implemented by the object-oriented programming (OOP) 

language. This tool includes several machine learning and 

data mining algorithms such as regression, classification, 

clustering, exploring association rules, pre-processing tools 

(filters), and selection methods for attributes. 

In addition, to train and test the proposed method, K-fold 

(K=10) method is employed. In this type of test, data are 

classified into K subsets. From these K subsets, a subset is 

used for test and K-1 subsets are used for training. This 

procedure is repeated K-times and all data are once used for 

test and once for training. Finally, an average of these K 

times test is selected as the final estimation. In the K-fold 

method, the ratio of each class in each subset and in the main 

set is the same [17]. 

The results of the experiments are presented in Fig. 10 to 

Fig. 15 in terms of the model construction time, precision, F-

measure, kappa, mean absolute error, and root mean squared 

error. 

According to Fig. 10, the time of constructing the model 

based on the MLP algorithm and the proposed hybrid model 

based on Bagging and Random Forest algorithms are higher 

compared to other models. Also, the results in Fig. 11 show 

that the proposed hybrid model obtained from the Bagging 

and Random Forest algorithms with an accuracy of 77.5% 

yields superior performance over other models.  

Moreover, as it is obvious in Fig. 12 and Fig. 13, the 

proposed hybrid model is superior in terms of F-measure and 

Kappa criteria over other models. These values are 77.4% 

and 0.6768, respectively. 

Furthermore, according to the results shown in Fig. 14, it can 

be concluded that the Random Forest has a lower mean 

absolute error than the other models; while the proposed 

hybrid model has better performance in terms of root mean 

squared error, which is equal to 0.2279. 

 
Fig. 10. Comparing the various predictive models in terms of the time 

needed to construct the model 

 
Fig. 11. Comparing the various predictive models in terms of precision 

  
Fig. 12. Comparing the various predictive models in terms of precision 
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Fig. 13. Comparing the various predictive models in terms of precision 

  
Fig. 14. Comparing the various predictive models in terms of precision 

  
Fig. 15. Comparing the various predictive models in terms of precision 

IV. CONCLUSION 

In this paper, data mining algorithms were used to predict 

the amount of noise emitted from aerodynamic objects. The 

dataset used in this study was named “Airfoil Self-Noise”, 

which was collected by NASA. First, the required pre-

processing was applied to this dataset. Then, using common 

classification methods, predictive models were generated 

and evaluated in Weka tool. The results showed that the 

proposed hybrid model derived from the Bagging and 

Random Forest algorithm is superior performance compared 

to other algorithms with an accuracy of 77.5%. 
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