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Abstract— This paper discusses how to ensure security, i.e., confidentiality and integrity properties, for data in IoT applications. 

While confidentiality could be assessed via information flow analysis, integrity is ensured by error-correcting codes. In addition to 

errors, many communication channels also cause erasures, i.e., the demodulator cannot decide which symbol the received waveform 

represents. The paper proposes a method that might correct both errors and erasures together. Our method is efficient in reducing 

memory storage as well as decoding complexity. 
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I. INTRODUCTION 

It is estimated that Internet of Things (IoT) will generate 

billions of dollars in profit for industries over the next two 

decades. Many organizations have started to develop and 

implement their own IoT strategies. IoT enables devices 

would generate and transmit so many data such that security 

should be a top concern. IoT users require that 

communication technologies have to guarantee both 

efficiency and security. This paper discusses how to 

guarantee two main properties of security, i.e., 

confidentiality and integrity, for IoT applications.  

A. Confidentiality 

Securing the data manipulated by information systems has 

been a challenge in the past few years. Several methods to 

limit the information disclosure exist, such as access control, 

and cryptography. These are useful approaches, but they 

have a fundamental limitation, i.e., they can prevent 

confidential information from being read or modified by 

unauthorized users, but they do not regulate the information 

propagation after it has been released. For example, access 

control prevents unauthorized file access, but is insufficient 

to control how the data is used afterwards. Similarly, 

cryptography provides the means to exchange information 

privately across a non-secure channel, but no guarantee 

about the confidentiality of private data is given after it is 

decrypted. Thus, neither access control nor encryption 

provide a complete solution to protect confidentiality of 

information systems.  

To ensure confidentiality for an information system, i.e., 

IoT system, it is necessary to show that the system as a 

whole enforces a confidentiality policy, i.e., by analysing 

how information flows within the system. The analysis must 

show that information controlled by a confidentiality policy 

cannot flow to a location where that policy is violated. Thus, 

the confidentiality policy we wish to enforce is an 

information flow policy, and the method that enforces them 

is an information flow analysis. 

Information flow analysis is a technique that has recently 

become an active research topic. In general, the approach of 

information flow security is based on the notion of 

interference [14]. Informally, interference exists inside a 

system when the private data affect public data. Therefore, 

an attacker might guess private data from observing public 

data. Non-interference, i.e., the absence of interference, is 

often used to prove that an information system is secured. 

Non-interference is required for applications where the 

users need their private data strictly protected. However, 

many practical applications related to IoT might 

intentionally violate non-interference by leaking minor 

information. Such systems include password checkers, 

cryptographic operations etc. For instance, when an attacker 

tries to guess the password: even when the attacker makes a 

wrong guess, secret information has been leaked, i.e., it 

reveals information about what the real password is not. 

Similarly, there is a flow of information from the plain-text 

to the cipher-text, since the cipher-text depends on the plain-

text. These applications are rejected by non-interference. 

Actually, the insecure property will happen only when it 

exceeds a specific threshold, or amount of interference. If 

the interference in the system is small enough, e.g., below a 

threshold given by specific security policy, the system is 

considered to be secure. The security analysis that requires 

to determine how much information flows from high level, 

i.e., secret data, to low level, i.e., public output, is known as 
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quantitative information flow. It concerned with measure the 

leakage of information in order to decide if the leakage is 

tolerable. 

Qualitative information flow analysis, i.e., non-

interference, aims to determine whether a program leaks 

private information or not. Thus, these absolute security 

properties always reject a program if it leaks any information. 

Quantitative information flow analysis offers a more general 

security policy, since it gives a method to tolerate a minor 

leakage, i.e., by computing how much information has been 

leaked and comparing this with a threshold. By adjusting the 

threshold, the security policy can be applied for different 

applications, and in particular, if the threshold is , the 

quantitative policy is seen as a qualitative one. The idea of 

quantitative information flow analysis has been discussed in 

details in [5], one of our papers; readers can refer to it for 

more information. 

B. Integrity 

Integrity means maintaining and assuring accuracy and 

completeness of data. However, during the wireless 

transmission in IoT applications, messages can be erroneous 

due to noisy channels. Error means the received symbol is 

different from the transmitted symbol. In order to protect 

data against errors, error correcting codes techniques are 

required. Error-correcting codes are applied in situations 

where retransmissions are relatively costly or impossible. 

Error-correcting codes ensure proper performance of IoT 

systems. They ensure the integrity of communication links in 

the presence of noise, distortion, and attenuation 

[8][11][12][13]. The use of a parity-bit as an error-detecting 

mechanism is one of the simplest and most well-known 

schemes used in digital communication. Data is portioned 

into blocks. To each block, an additional bit is appended to 

make the number of bits which are  in the block, including 

the appended bit, an even number. If a single bit-error occurs, 

within the block, the number of 1’s becomes odd. Hence, 

this allows for detection of single errors [1][2]. 

The most applications of error-correcting codes are in 

telecommunications. Many early applications of coding were 

developed for deep-space and satellite communication 

systems. For example, satellite photos were taken in space 

and sent back to earth. The channel for such transmission is 

space and the earth’s atmosphere. These communication 

systems have limitations on their transmitted power. Solar 

activity and atmospheric conditions can introduce errors into 

weak signals coming from the spacecraft. Error-correcting 

codes are an excellent mean to guarantee reliable 

communications. With the applications of error-correcting 

codes, most of the pictures sent could be correctly recovered 

here on earth. As examples, a binary (32,6,16) Reed-Muller 

code was used during the Mariner and Viking mission to 

Mars around 1970 or a convolutional code was used on the 

Pioneer 10 and 11 missions to Jupiter and Saturn in 1972. 

The (24,12,8) Golay code was used in the Voyager 1 and 

Voyager 2 spacecrafts transmitting color pictures of Jupiter 

and Saturn in 1979 and 1980. When Voyager 2 went on to 

Uranus and Neptune, the code was switched to a 

concatenated Reed-Solomon code for its substantially more 

powerful error correcting capabilities. 

The block and convolutional codes are also applied to the 

Global System for Mobile communications (GSM) which is 

the most popular digital cellular mobile communication 

system. Reed Solomon and Viterbi codes have been used for 

nearly 20 years for the delivery of digital satellite TV.  Low-

density parity-check codes (LDPC codes) are now used in 

many recent high-speed communication standards, such as 

Digital video broadcasting-S2 (DVB-S2), WiMAX, 

10GBase-T Ethernet [4] 

Most error correcting codes, in general, are designed to 

correct or detect errors. However, many channels cause 

erasures, i.e., the demodulator cannot decide which symbol 

the received waveform represents, in addition to errors. In 

principle, decoding over such channels can be accomplished 

by deleting erased symbols and decoding the resulting vector 

with respect to the punctured code, i.e., the code in which all 

erasures have been removed. For any given linear code and 

any given maximum number of correctable erasures, in [1], 

Abdel-Ghaffar and Weber introduced a parity-check matrix 

yielding parity-check equations that do not check any of the 

erased symbols and which are sufficient to characterize the 

punctured code. This allows for the separation of erasures 

from errors to facilitate decoding. However, these parity-

check matrices have too many redundant rows. To reduce 

decoding complexity, parity-check matrices with small 

number of rows are preferred. This paper proposes a method 

that can build a matrix with a smaller number of rows. 

Organization of the paper. The rest of this paper is 

organized as follows. Section I introduces the main ideas of 

error-correcting codes, errors and erasures. Section III 

presents methods to construct a parity-check matrix that can 

correct both errors and erasures. Section IV discusses a 

general solution for the covering design, which is used in the 

proposal. Finally, Section V concludes the paper. 

II. CODES, ERRORS AND ERASURES 

A. Linear Block Codes 

Let  be an  linear block code. It means that  is 

a -dimensional subspace of the -dimensional vector space.  

The set of codewords of  can be defined as the null space 

of the row space of an  parity-check matrix  

of rank . Since a vector x is a codeword of  iff 

x , where the superscript  denotes the transpose, we 

can derive  parity-check equations PCE, as follows, 

PCE :   for .  

An equation PCE (x) is said to check x in position  iff 

. 

B. Erasures 

Sometimes, at the receiver, the demodulator cannot decide 

which symbol the received waveform represents. In this case, 

we declare the received symbol as an erasure. When the 

received codeword contains erasures instead of errors, the 

iterative decoding can be used [2]. 

Here, we summarize the iterative decoding procedure 

using an example of the (7,4,3) binary Hamming code with 

the following parity-check matrix, 
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Since a vector x  is a codeword iff 

x . Hence, every codeword has to satisfy three parity-

check equations as follows, 

1 3 4 5

2 4 5 6

3 5 6 7

A: 0

B: 0

C: 0.

x x x x

x x x x

x x x x

+ + + =

+ + + =

+ + + =

 

Assume that the received vector is **010*0, where the 

erased symbol is denoted by *. Equation A checks on  , 

 and . If exactly one of these four symbols is erased, 

it can be retrieved from this equation. Thus,    since  

, , and . Similarly, we can derive that 

, and  from Equation B and C. Therefore, the 

iterative decoding decided that the transmitted codeword is 

1101000. 

Iterative decoding is successful iff erasures do not fill the 

positions of a nonempty stopping set. A stopping set is a set 

of positions in which there is no parity-check equation that 

checks exactly one symbol in these positions. The 

performance of iterative decoding techniques for correcting 

erasures depends on the sizes of the stopping sets associated 

with the parity-check matrix representing the code. The 

parity-check matrix with redundant rows could benefit the 

decoding performance, i.e., reducing the size of stopping sets, 

while increasing the decoding complexity. More information 

on stopping set can be found in [5], [9], [10]. 

C. Separation of Errors from Erasures 

In this part, we discuss how to handle errors together with 

erasures. In this case, we can apply an algorithm using trials 

in which erasures are replaced by  or ;  and the resulting 

vector is decoded by a decoder which is capable of 

correcting errors. For binary code, two trials are sufficient 

[2][6].  

For example, if  is a binary  -code with a 

Hamming distance  , then  can correct  

errors and  erasures. In the presence of no erasures,  is 

able to correct up to   errors. Let r be a received 

vector having at most  errors and at most  erasures. 

Suppose the decoder constructs two vectors r   and r , 

where r  is obtained by filling all erasure positions in r with 

the symbols . Since  is binary, in either r  or r , 

at least half the erasure locations have the right symbols. 

Hence, either r  or r has a distance at most  

from the transmitted codeword. Thus, any standard error 

correction technique can be applied. If the correction 

decodes both r   and r   to codewords, and these codewords 

are the same, then this is the transmitted codeword. If they 

are different, then there is one, and only one, vector 

requiring at most  changes in non-erasure positions to 

become the right codeword. More information on this 

algorithm can be found in [13]. 

Abdel-Ghaffar and Weber proposed another way of 

decoding over such channels [1]. First, all erasures are 

deleted from the received message. Errors in the resulting 

codeword will be corrected based on the punctured code, i.e., 

codewords consist of symbols in positions which are not 

erased. After all errors have been corrected, the erasures will 

be recovered by the iterative decoding. 

The decoder can compute a parity-check matrix for the 

punctured code after receiving the codeword. However, this 

leads to time delay which is unacceptable specially in IoT 

applications. To reduce time delay, we can store parity-

check matrices of all punctured codes corresponding to all 

erasure patterns. The drawback of this solution is the 

requirement of huge memory storage at the decoder. 

Abdel-Ghaffar and Weber proposed using a separating 

matrix with redundant rows, providing enough parity-check 

equations which do not check any of the erased symbols and 

are sufficient to form a parity-check matrix for the punctured 

code obtained by deleting all erasures [1]. Having these 

parity-check equations not checking any of the erased 

symbols lead to the concept of separation of errors from 

erasures. 

The basic concept of this decoding technique can be 

illustrated by an example as follows. We consider an [8,4,4] 

binary extended Hamming code with the following parity-

check matrix, 

 
A normal parity-check matrix just has only four rows as 

the first four rows in this separating matrix. Allowing 

redundant rows simplifies the decoding of erasures in 

addition to errors. Assume that we get a codeword r= 

0*011000 with one erasure in the second position. Applying 

the decoding technique mentioned above, firstly we delete 

the erasure and the resulting vector is r’ = 0011000. This 

vector r’ can be considered as a codeword of the (7,4,3) 

punctured code. In , the first, the second and the sixth row 

have zeros in the second position. It means that three 

corresponding parity-check equations do not check the 

erased symbol. Based on these three rows, we can form a 

parity-check matrix  for the punctured code, as follows. 

 

 
 

Using , r’ is decoded into 0011010. Putting back the 

erasure, we get 0*011010. The third row of  , which 

checks the erased symbol, can be used to recover the erasure. 

Thus, the decoded codeword corresponding to r is 01011010.  

A normal parity-check matrix cannot be used for 

decoding of both errors and erasures together. Decoding is 

feasible when we pay the price of storing a parity-check 

matrix with more rows than a normal one. In order to reduce 

the memory storage as well as the decoding complexity, a 

parity-check matrix with small number of rows is preferred. 

Given any linear code and any given maximum number of 

correctable erasures, Abdel-Ghaffar and Weber introduced 
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separating matrices yielding parity-check equations that do 

not check any of the erased symbols and which are sufficient 

to characterize all punctured codes corresponding to this 

maximum number of erasures [1]. This allows for the 

separation of erasures from errors to facilitate decoding. 

However, their proposal yields separating matrices which 

typically have too many redundant rows. The following part 

of this paper discusses an improved method to construct 

such separating matrices, applying covering design, with a 

smaller number of rows. 

III. HOW TO BUILD AN L-SEPARATING MATRIX 

A. Set Separation 

Let  of rank  be an (  ) parity-check 

matrix of , . Let  be a subset of  and 

 be a subset of , define  with  

and , be a  submatrix of . For the code  

with the length , define  be the punctured 

code consisting of all codewords of  in which the symbols 

in positions indexed by  are deleted. 

Clearly,  is a linear code over  of length , 

dimension , and Hamming distance . Let 

, define . 

Definition 1 [1]: A parity-check matrix  separates 

 iff   is a parity-check matrix of . 

Theorem 1 [1]:  A parity-check matrix  of an  

linear code  separates a set  of size  iff  

has rank .  

Definition 2 [1]: If  separates all sets  of size  for a 

fixed , it is -separating.   

If  is an -separating parity-check matrix of the code , 

based on , we can construct a parity-check matrix for any 

code punctured up to a fixed number  of symbols.   has 

two features: 

•  can separate erasures from errors, since has 

enough parity-check equations that do not check any erased 

symbols, and are sufficient to characterize the punctured 

code. It means that the punctured code, which is formed by 

deleting erased symbols, can be corrected errors by a sub-

matrix of . 

• In case  ,  has no stopping 

set of size  or less. For any pattern of  or fewer erasures, 

not only are there enough parity-check equations that do not 

check any of the erased symbols characterize the punctured 

code, but also there is a parity-check equation that checks 

exactly one of the erased symbols. It means that after all 

errors have been corrected, erasures can be recovered by the 

iterative decoding procedure. 

B. Separating Matrix 

Let  be a full rank parity-check matrix, , 

in which , be distinct subsets of  of 

size , For each , it is trivial that  has rank  

( ). By elementary row operations on 

, we can obtain an  matrix , for each 

, of rank , such that its last  

rows have zeros in positions indexed by . 

 
Let  be a matrix which rows is the union of sets of the 

last  rows in , for .  is an -

separating matrix of the code , and it has at most 

 rows [1]. 

 

 
 

C. A More Efficient Separating Matrix 

In this section, we propose a method that can construct an  

-separating matrix with a smaller number of rows. This 

method implements the idea of covering design [3][7]. 

Basically, given , a  covering design is 

a collection of  -element subsets of  , called 

blocks, such that each -element subset of  is contained in 

at least one block, e.g.,  is contained in . 

For our specific situation, consider an  covering 

design. Let  be a set of -element subsets, 

, such that every -element 

subset  is contained in at least one member of . Assign to 

each , , an element  of  such that  is 

contained in .  has rank . For any , by elementary 

row operations on ,  we can obtain an -matrix 

of rank  such that its last  rows have zeros in 

positions indexed by . After arranging columns, we obtain 

a matrix  with the following format. 

 
Consider the set  assigned to , by further elementary 

row operations,  can be changed into a matrix such that 

rows   have zeros in positions indexed by , 

and rows   have zeros in positions 

indexed by . After column arrangement, we obtain a 

matrix with the following format, 
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Following this method, if  and  belong to the same , 

the last rows in  and  are the same. It 

follows that the matrix which rows is the union of the last 

 rows in , , and the rows 

  of , , is an -separating 

parity-check matrix of . Let  denote the minimum 

size of , i.e.,  | |. This matrix has at most 

 rows. It is obvious to 

see that the upper bound on number of rows in Approach 2 is 

strictly smaller than in Approach 1. In case , two 

approaches are the same. For a given , we can choose an 

appropriate  to achieve the best result. 

  

IV. COVERING DESIGN 

Consider a covering design, where .   

Example 1: Given that .  There are 

=28 subsets of 2-elements, and =56 subsets of 3-

elements of 1,2,…,8 . However, we only need at most 

21 subsets of 3-elements, i.e., {{1,2,3}, {1,2,4}, {1,2,5}, 

{1,2,6}, {1,2,7}, {1,2,8}, {1,3,4}, {1,3,5}, {1,3,6}, {1,3,7}, 

{1,3,8},}, {1,4,5}, {1,4,6}, {1,4,7}, {1,4,8}, {1,5,6}, {1,5,7}, 

{1,5,8}, {1,6,7}, {1,6,8}, {1,7,8}}, to form all 28 subsets of 

2-elements. For example, based on the subset {1,2,3}, we 

can form {1,2}, {2,3}, {1,3}. Using 21 subsets of size 3 

mentioned above, we can construct all 28 subsets of size 2. 

The covering design problem has been investigated since 

many years ago. However, until now, there is no general 

optimal solution for all triples . In this section, we 

propose a covering design valid for all triples . This 

design is not optimal but it can give a general solution for 

the problem. 

A. Approach 1 

Firstly, we show that with at most  subsets 

of size , we can form all  subsets of size .  

1. Take the first  elements, i.e., , out 

of . 

2. The rest of the set is 

. Based on these 

elements, form all subsets of size . The number of 

subsets is .  

3. Put the first  elements into each subset of size  

to have subsets of size . With these  

subsets of size , it is easy to see that we can form all 

 subsets of size   

B. Approach 2 

By modifying Approach 1, we show that some -element 

subsets can be merged to reduce . 

Approach 2 shows that with at most 

 subsets of size , we 

can form all  subsets of size .  

1. Take the first  elements, i.e., , out 

of . 

2. The rest of the set is 

. Based on these 

elements, form all subsets of size  and arrange them 

into columns based on the following rules: 

• Elements in each subset are arranged in ascending 

order, e.g., {1,2,3}. 

• Subsets are arranged into columns. Subsets are in 

one column iff their first    elements are the 

same (except the special column mentioned 

below). Hence, subsets in one column are 

different from each other only in the last element. 

The subset with the smaller last element will be 

listed above. 

• Special column: In case , we arrange all 

subsets containing both element  in a 

column and name it special column.  It is easy to 

see that there are  subsets in 

this column. 

3. Put the first  elements into each subset of size  

to have subsets of size . 

4. If the number of subsets in the longest column is 

greater or equal to three and the special column exists, 

we can merge the last two subsets, which contain 

either  or , in each column (except the special 

column) into one, i.e., the merged set, by this rule 

• Take the union of two subsets, i.e., the size of the 

union subset is .  

• Eliminate the first element of the union subset, i.e., 

its size is now .  

We can merge the last two subsets in each column (except 

the special column) because: (a) The first  elements in 

the last two subsets are also in another subset in the columns. 

Thus, any subset of size  formed by using these  

elements can be form by any other subset in the column; (b) 

Any subset of size  containing  or  can be 

formed by subsets in the special column.   
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Example 2: Given that . Following 

the first three steps of Approach 2, we get: 

 
Fig.1 the first three steps of Approach 2 

Subsets in boxes are subsets that can be merged. Step 4 of 

Approach 2 gives the following result, 

 

 
 Fig.2 Step 4 of Approach 2 

The number of reduced subsets is equal to the number of 

subsets that contain the elements  or . Thus, the 

number of reduced subsets is . Therefore, 

with at most  subsets of 

size , we can form all  subsets of size . 

V. CONCLUSIONS 

This paper discusses how to ensure confidentiality and 

integrity for data in IoT systems. The paper focuses more on 

integrity which can be ensured via the implementation of 

error-correcting codes. Separating parity-check matrices are 

useful for decoding over channels causing both errors and 

erasures. We propose a way to build a separating parity-

check matrix with a smaller set of rows. This method not 

only reduces both decoding complexity and memory storage. 

Besides, we also present a covering design. This design is 

not optimal but it gives a general solution for all triple 

. 
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