
192

 Secure Information Flow for IoT Applications

Tri Minh Ngo#, Nhat Vien Duy Nguyen#

Faculty of Electronic and Telecommunication Engineering, The University of Danang – University of Science and Technology, Vietnam

 E-mail: tringominh@gmail.com, nhatvien@gmail.com

Abstract— This paper discusses how to ensure security, i.e., confidentiality and integrity properties, for data in IoT applications.

While confidentiality could be assessed via information flow analysis, integrity is ensured by error-correcting codes. In addition to

errors, many communication channels also cause erasures, i.e., the demodulator cannot decide which symbol the received waveform

represents. The paper proposes a method that might correct both errors and erasures together. Our method is efficient in reducing

memory storage as well as decoding complexity.

Keywords— Confidentiality, Integrity, Information Flow, Erasure, Separating Matrix, Covering Design.

I. INTRODUCTION

It is estimated that Internet of Things (IoT) will generate

billions of dollars in profit for industries over the next two

decades. Many organizations have started to develop and

implement their own IoT strategies. IoT enables devices

would generate and transmit so many data such that security

should be a top concern. IoT users require that

communication technologies have to guarantee both

efficiency and security. This paper discusses how to

guarantee two main properties of security, i.e.,

confidentiality and integrity, for IoT applications.

A. Confidentiality

Securing the data manipulated by information systems has

been a challenge in the past few years. Several methods to

limit the information disclosure exist, such as access control,

and cryptography. These are useful approaches, but they

have a fundamental limitation, i.e., they can prevent

confidential information from being read or modified by

unauthorized users, but they do not regulate the information

propagation after it has been released. For example, access

control prevents unauthorized file access, but is insufficient

to control how the data is used afterwards. Similarly,

cryptography provides the means to exchange information

privately across a non-secure channel, but no guarantee

about the confidentiality of private data is given after it is

decrypted. Thus, neither access control nor encryption

provide a complete solution to protect confidentiality of

information systems.

To ensure confidentiality for an information system, i.e.,

IoT system, it is necessary to show that the system as a

whole enforces a confidentiality policy, i.e., by analysing

how information flows within the system. The analysis must

show that information controlled by a confidentiality policy

cannot flow to a location where that policy is violated. Thus,

the confidentiality policy we wish to enforce is an

information flow policy, and the method that enforces them

is an information flow analysis.

Information flow analysis is a technique that has recently

become an active research topic. In general, the approach of

information flow security is based on the notion of

interference [14]. Informally, interference exists inside a

system when the private data affect public data. Therefore,

an attacker might guess private data from observing public

data. Non-interference, i.e., the absence of interference, is

often used to prove that an information system is secured.

Non-interference is required for applications where the

users need their private data strictly protected. However,

many practical applications related to IoT might

intentionally violate non-interference by leaking minor

information. Such systems include password checkers,

cryptographic operations etc. For instance, when an attacker

tries to guess the password: even when the attacker makes a

wrong guess, secret information has been leaked, i.e., it

reveals information about what the real password is not.

Similarly, there is a flow of information from the plain-text

to the cipher-text, since the cipher-text depends on the plain-

text. These applications are rejected by non-interference.

Actually, the insecure property will happen only when it

exceeds a specific threshold, or amount of interference. If

the interference in the system is small enough, e.g., below a

threshold given by specific security policy, the system is

considered to be secure. The security analysis that requires

to determine how much information flows from high level,

i.e., secret data, to low level, i.e., public output, is known as

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 3 (2019) NO 2-2

e-ISSN : 2549-9904

ISSN : 2549-9610

193

quantitative information flow. It concerned with measure the

leakage of information in order to decide if the leakage is

tolerable.

Qualitative information flow analysis, i.e., non-

interference, aims to determine whether a program leaks

private information or not. Thus, these absolute security

properties always reject a program if it leaks any information.

Quantitative information flow analysis offers a more general

security policy, since it gives a method to tolerate a minor

leakage, i.e., by computing how much information has been

leaked and comparing this with a threshold. By adjusting the

threshold, the security policy can be applied for different

applications, and in particular, if the threshold is , the

quantitative policy is seen as a qualitative one. The idea of

quantitative information flow analysis has been discussed in

details in [5], one of our papers; readers can refer to it for

more information.

B. Integrity

Integrity means maintaining and assuring accuracy and

completeness of data. However, during the wireless

transmission in IoT applications, messages can be erroneous

due to noisy channels. Error means the received symbol is

different from the transmitted symbol. In order to protect

data against errors, error correcting codes techniques are

required. Error-correcting codes are applied in situations

where retransmissions are relatively costly or impossible.

Error-correcting codes ensure proper performance of IoT

systems. They ensure the integrity of communication links in

the presence of noise, distortion, and attenuation

[8][11][12][13]. The use of a parity-bit as an error-detecting

mechanism is one of the simplest and most well-known

schemes used in digital communication. Data is portioned

into blocks. To each block, an additional bit is appended to

make the number of bits which are in the block, including

the appended bit, an even number. If a single bit-error occurs,

within the block, the number of 1’s becomes odd. Hence,

this allows for detection of single errors [1][2].

The most applications of error-correcting codes are in

telecommunications. Many early applications of coding were

developed for deep-space and satellite communication

systems. For example, satellite photos were taken in space

and sent back to earth. The channel for such transmission is

space and the earth’s atmosphere. These communication

systems have limitations on their transmitted power. Solar

activity and atmospheric conditions can introduce errors into

weak signals coming from the spacecraft. Error-correcting

codes are an excellent mean to guarantee reliable

communications. With the applications of error-correcting

codes, most of the pictures sent could be correctly recovered

here on earth. As examples, a binary (32,6,16) Reed-Muller

code was used during the Mariner and Viking mission to

Mars around 1970 or a convolutional code was used on the

Pioneer 10 and 11 missions to Jupiter and Saturn in 1972.

The (24,12,8) Golay code was used in the Voyager 1 and

Voyager 2 spacecrafts transmitting color pictures of Jupiter

and Saturn in 1979 and 1980. When Voyager 2 went on to

Uranus and Neptune, the code was switched to a

concatenated Reed-Solomon code for its substantially more

powerful error correcting capabilities.

The block and convolutional codes are also applied to the

Global System for Mobile communications (GSM) which is

the most popular digital cellular mobile communication

system. Reed Solomon and Viterbi codes have been used for

nearly 20 years for the delivery of digital satellite TV. Low-

density parity-check codes (LDPC codes) are now used in

many recent high-speed communication standards, such as

Digital video broadcasting-S2 (DVB-S2), WiMAX,

10GBase-T Ethernet [4]

Most error correcting codes, in general, are designed to

correct or detect errors. However, many channels cause

erasures, i.e., the demodulator cannot decide which symbol

the received waveform represents, in addition to errors. In

principle, decoding over such channels can be accomplished

by deleting erased symbols and decoding the resulting vector

with respect to the punctured code, i.e., the code in which all

erasures have been removed. For any given linear code and

any given maximum number of correctable erasures, in [1],

Abdel-Ghaffar and Weber introduced a parity-check matrix

yielding parity-check equations that do not check any of the

erased symbols and which are sufficient to characterize the

punctured code. This allows for the separation of erasures

from errors to facilitate decoding. However, these parity-

check matrices have too many redundant rows. To reduce

decoding complexity, parity-check matrices with small

number of rows are preferred. This paper proposes a method

that can build a matrix with a smaller number of rows.

Organization of the paper. The rest of this paper is

organized as follows. Section I introduces the main ideas of

error-correcting codes, errors and erasures. Section III

presents methods to construct a parity-check matrix that can

correct both errors and erasures. Section IV discusses a

general solution for the covering design, which is used in the

proposal. Finally, Section V concludes the paper.

II. CODES, ERRORS AND ERASURES

A. Linear Block Codes

Let be an linear block code. It means that is

a -dimensional subspace of the -dimensional vector space.

The set of codewords of can be defined as the null space

of the row space of an parity-check matrix

of rank . Since a vector x is a codeword of iff

x , where the superscript denotes the transpose, we

can derive parity-check equations PCE, as follows,

PCE : for .

An equation PCE (x) is said to check x in position iff

.

B. Erasures

Sometimes, at the receiver, the demodulator cannot decide

which symbol the received waveform represents. In this case,

we declare the received symbol as an erasure. When the

received codeword contains erasures instead of errors, the

iterative decoding can be used [2].

Here, we summarize the iterative decoding procedure

using an example of the (7,4,3) binary Hamming code with

the following parity-check matrix,

194

Since a vector x is a codeword iff

x . Hence, every codeword has to satisfy three parity-

check equations as follows,

1 3 4 5

2 4 5 6

3 5 6 7

A: 0

B: 0

C: 0.

x x x x

x x x x

x x x x

+ + + =

+ + + =

+ + + =

Assume that the received vector is **010*0, where the

erased symbol is denoted by *. Equation A checks on ,

 and . If exactly one of these four symbols is erased,

it can be retrieved from this equation. Thus, since

, , and . Similarly, we can derive that

, and from Equation B and C. Therefore, the

iterative decoding decided that the transmitted codeword is

1101000.

Iterative decoding is successful iff erasures do not fill the

positions of a nonempty stopping set. A stopping set is a set

of positions in which there is no parity-check equation that

checks exactly one symbol in these positions. The

performance of iterative decoding techniques for correcting

erasures depends on the sizes of the stopping sets associated

with the parity-check matrix representing the code. The

parity-check matrix with redundant rows could benefit the

decoding performance, i.e., reducing the size of stopping sets,

while increasing the decoding complexity. More information

on stopping set can be found in [5], [9], [10].

C. Separation of Errors from Erasures

In this part, we discuss how to handle errors together with

erasures. In this case, we can apply an algorithm using trials

in which erasures are replaced by or ; and the resulting

vector is decoded by a decoder which is capable of

correcting errors. For binary code, two trials are sufficient

[2][6].

For example, if is a binary -code with a

Hamming distance , then can correct

errors and erasures. In the presence of no erasures, is

able to correct up to errors. Let r be a received

vector having at most errors and at most erasures.

Suppose the decoder constructs two vectors r and r ,

where r is obtained by filling all erasure positions in r with

the symbols . Since is binary, in either r or r ,

at least half the erasure locations have the right symbols.

Hence, either r or r has a distance at most

from the transmitted codeword. Thus, any standard error

correction technique can be applied. If the correction

decodes both r and r to codewords, and these codewords

are the same, then this is the transmitted codeword. If they

are different, then there is one, and only one, vector

requiring at most changes in non-erasure positions to

become the right codeword. More information on this

algorithm can be found in [13].

Abdel-Ghaffar and Weber proposed another way of

decoding over such channels [1]. First, all erasures are

deleted from the received message. Errors in the resulting

codeword will be corrected based on the punctured code, i.e.,

codewords consist of symbols in positions which are not

erased. After all errors have been corrected, the erasures will

be recovered by the iterative decoding.

The decoder can compute a parity-check matrix for the

punctured code after receiving the codeword. However, this

leads to time delay which is unacceptable specially in IoT

applications. To reduce time delay, we can store parity-

check matrices of all punctured codes corresponding to all

erasure patterns. The drawback of this solution is the

requirement of huge memory storage at the decoder.

Abdel-Ghaffar and Weber proposed using a separating

matrix with redundant rows, providing enough parity-check

equations which do not check any of the erased symbols and

are sufficient to form a parity-check matrix for the punctured

code obtained by deleting all erasures [1]. Having these

parity-check equations not checking any of the erased

symbols lead to the concept of separation of errors from

erasures.

The basic concept of this decoding technique can be

illustrated by an example as follows. We consider an [8,4,4]

binary extended Hamming code with the following parity-

check matrix,

A normal parity-check matrix just has only four rows as

the first four rows in this separating matrix. Allowing

redundant rows simplifies the decoding of erasures in

addition to errors. Assume that we get a codeword r=

0*011000 with one erasure in the second position. Applying

the decoding technique mentioned above, firstly we delete

the erasure and the resulting vector is r’ = 0011000. This

vector r’ can be considered as a codeword of the (7,4,3)

punctured code. In , the first, the second and the sixth row

have zeros in the second position. It means that three

corresponding parity-check equations do not check the

erased symbol. Based on these three rows, we can form a

parity-check matrix for the punctured code, as follows.

Using , r’ is decoded into 0011010. Putting back the

erasure, we get 0*011010. The third row of , which

checks the erased symbol, can be used to recover the erasure.

Thus, the decoded codeword corresponding to r is 01011010.

A normal parity-check matrix cannot be used for

decoding of both errors and erasures together. Decoding is

feasible when we pay the price of storing a parity-check

matrix with more rows than a normal one. In order to reduce

the memory storage as well as the decoding complexity, a

parity-check matrix with small number of rows is preferred.

Given any linear code and any given maximum number of

correctable erasures, Abdel-Ghaffar and Weber introduced

195

separating matrices yielding parity-check equations that do

not check any of the erased symbols and which are sufficient

to characterize all punctured codes corresponding to this

maximum number of erasures [1]. This allows for the

separation of erasures from errors to facilitate decoding.

However, their proposal yields separating matrices which

typically have too many redundant rows. The following part

of this paper discusses an improved method to construct

such separating matrices, applying covering design, with a

smaller number of rows.

III. HOW TO BUILD AN L-SEPARATING MATRIX

A. Set Separation

Let of rank be an () parity-check

matrix of , . Let be a subset of and

 be a subset of , define with

and , be a submatrix of . For the code

with the length , define be the punctured

code consisting of all codewords of in which the symbols

in positions indexed by are deleted.

Clearly, is a linear code over of length ,

dimension , and Hamming distance . Let

, define .

Definition 1 [1]: A parity-check matrix separates

 iff is a parity-check matrix of .

Theorem 1 [1]: A parity-check matrix of an

linear code separates a set of size iff

has rank .

Definition 2 [1]: If separates all sets of size for a

fixed , it is -separating.

If is an -separating parity-check matrix of the code ,

based on , we can construct a parity-check matrix for any

code punctured up to a fixed number of symbols. has

two features:

• can separate erasures from errors, since has

enough parity-check equations that do not check any erased

symbols, and are sufficient to characterize the punctured

code. It means that the punctured code, which is formed by

deleting erased symbols, can be corrected errors by a sub-

matrix of .

• In case , has no stopping

set of size or less. For any pattern of or fewer erasures,

not only are there enough parity-check equations that do not

check any of the erased symbols characterize the punctured

code, but also there is a parity-check equation that checks

exactly one of the erased symbols. It means that after all

errors have been corrected, erasures can be recovered by the

iterative decoding procedure.

B. Separating Matrix

Let be a full rank parity-check matrix, ,

in which , be distinct subsets of of

size , For each , it is trivial that has rank

(). By elementary row operations on

, we can obtain an matrix , for each

, of rank , such that its last

rows have zeros in positions indexed by .

Let be a matrix which rows is the union of sets of the

last rows in , for . is an -

separating matrix of the code , and it has at most

 rows [1].

C. A More Efficient Separating Matrix

In this section, we propose a method that can construct an

-separating matrix with a smaller number of rows. This

method implements the idea of covering design [3][7].

Basically, given , a covering design is

a collection of -element subsets of , called

blocks, such that each -element subset of is contained in

at least one block, e.g., is contained in .

For our specific situation, consider an covering

design. Let be a set of -element subsets,

, such that every -element

subset is contained in at least one member of . Assign to

each , , an element of such that is

contained in . has rank . For any , by elementary

row operations on , we can obtain an -matrix

of rank such that its last rows have zeros in

positions indexed by . After arranging columns, we obtain

a matrix with the following format.

Consider the set assigned to , by further elementary

row operations, can be changed into a matrix such that

rows have zeros in positions indexed by ,

and rows have zeros in positions

indexed by . After column arrangement, we obtain a

matrix with the following format,

196

Following this method, if and belong to the same ,

the last rows in and are the same. It

follows that the matrix which rows is the union of the last

 rows in , , and the rows

 of , , is an -separating

parity-check matrix of . Let denote the minimum

size of , i.e., | |. This matrix has at most

 rows. It is obvious to

see that the upper bound on number of rows in Approach 2 is

strictly smaller than in Approach 1. In case , two

approaches are the same. For a given , we can choose an

appropriate to achieve the best result.

IV. COVERING DESIGN

Consider a covering design, where .

Example 1: Given that . There are

=28 subsets of 2-elements, and =56 subsets of 3-

elements of 1,2,…,8 . However, we only need at most

21 subsets of 3-elements, i.e., {{1,2,3}, {1,2,4}, {1,2,5},

{1,2,6}, {1,2,7}, {1,2,8}, {1,3,4}, {1,3,5}, {1,3,6}, {1,3,7},

{1,3,8},}, {1,4,5}, {1,4,6}, {1,4,7}, {1,4,8}, {1,5,6}, {1,5,7},

{1,5,8}, {1,6,7}, {1,6,8}, {1,7,8}}, to form all 28 subsets of

2-elements. For example, based on the subset {1,2,3}, we

can form {1,2}, {2,3}, {1,3}. Using 21 subsets of size 3

mentioned above, we can construct all 28 subsets of size 2.

The covering design problem has been investigated since

many years ago. However, until now, there is no general

optimal solution for all triples . In this section, we

propose a covering design valid for all triples . This

design is not optimal but it can give a general solution for

the problem.

A. Approach 1

Firstly, we show that with at most subsets

of size , we can form all subsets of size .

1. Take the first elements, i.e., , out

of .

2. The rest of the set is

. Based on these

elements, form all subsets of size . The number of

subsets is .

3. Put the first elements into each subset of size

to have subsets of size . With these

subsets of size , it is easy to see that we can form all

 subsets of size

B. Approach 2

By modifying Approach 1, we show that some -element

subsets can be merged to reduce .

Approach 2 shows that with at most

 subsets of size , we

can form all subsets of size .

1. Take the first elements, i.e., , out

of .

2. The rest of the set is

. Based on these

elements, form all subsets of size and arrange them

into columns based on the following rules:

• Elements in each subset are arranged in ascending

order, e.g., {1,2,3}.

• Subsets are arranged into columns. Subsets are in

one column iff their first elements are the

same (except the special column mentioned

below). Hence, subsets in one column are

different from each other only in the last element.

The subset with the smaller last element will be

listed above.

• Special column: In case , we arrange all

subsets containing both element in a

column and name it special column. It is easy to

see that there are subsets in

this column.

3. Put the first elements into each subset of size

to have subsets of size .

4. If the number of subsets in the longest column is

greater or equal to three and the special column exists,

we can merge the last two subsets, which contain

either or , in each column (except the special

column) into one, i.e., the merged set, by this rule

• Take the union of two subsets, i.e., the size of the

union subset is .

• Eliminate the first element of the union subset, i.e.,

its size is now .

We can merge the last two subsets in each column (except

the special column) because: (a) The first elements in

the last two subsets are also in another subset in the columns.

Thus, any subset of size formed by using these

elements can be form by any other subset in the column; (b)

Any subset of size containing or can be

formed by subsets in the special column.

197

Example 2: Given that . Following

the first three steps of Approach 2, we get:

Fig.1 the first three steps of Approach 2

Subsets in boxes are subsets that can be merged. Step 4 of

Approach 2 gives the following result,

 Fig.2 Step 4 of Approach 2

The number of reduced subsets is equal to the number of

subsets that contain the elements or . Thus, the

number of reduced subsets is . Therefore,

with at most subsets of

size , we can form all subsets of size .

V. CONCLUSIONS

This paper discusses how to ensure confidentiality and

integrity for data in IoT systems. The paper focuses more on

integrity which can be ensured via the implementation of

error-correcting codes. Separating parity-check matrices are

useful for decoding over channels causing both errors and

erasures. We propose a way to build a separating parity-

check matrix with a smaller set of rows. This method not

only reduces both decoding complexity and memory storage.

Besides, we also present a covering design. This design is

not optimal but it gives a general solution for all triple

.

ACKNOWLEDGMENT

The authors are supported by The University of Danang –

University of Science and Technology through the grant

T2019-02-13 and T2019-02-14.

REFERENCES

[1] K. A. S. Abdel-Ghaffar and J. H. Weber, “Separating erasures from

errors for decoding”, Proceedings of the IEEE International

Symposium on Information Theory, Toronto, Canada, pp. 215-219,
July 6-11, 2008.

[2] J. H. Weber, Lecture Notes: Error-Correcting Codes, Delft

University of Technology, 2007.
[3] J. H. Dinitz, D.R. Stinson, Contemporary Design Theory, A

Collection of Surveys, A Wiley-Inter-Science Publication, 1992.

[4] C. Di, D. Proietti, I.E. Telatar, T. J. Richardson, and R. L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the

binary erasure channel”, IEEE Trans. Inform. Theory, vol. 48, no. 6,

pp. 1570-1579, June 2002.
[5] T. M. Ngo, M. Huisman, “Complexity and information flow analysis

for multi-threaded programs”, Eur. Phys. J. Spec. Top. 226 (10),

2375–2392 (2017)
[6] H. D. L. Hollmann and L. M. G. M. Tolhuizen, “On parity check

collections for iterative erasure decoding that correct all correctable

erasure patterns of a given size,” IEEE Trans. Inform. Theory, vol. 53,

no. 2, pp. 823-828, February 2007.

[7] La Jolla Covering Repository, http://www.ccrwest.org/cover.html.

[8] R. M. Roth, Introduction to Coding Theory. Cambridge, UK:
Cambridge University Press, 2006.

[9] M. Schwartz and A. Vardy, “On the stopping distance and the

stopping redundancy of codes,” IEEE Trans. Inform. Theory, vol. 52,
no. 3, pp. 922-932, March 2006.

[10] J. H. Weber and K. A. S. Abdel-Ghaffar, “Results on parity-check

matrices with optimal stopping and/or dead-end set enumerators,”
IEEE Trans. Inform. Theory, vol. 54, no. 3, pp. 1368-1374, March

2008.

[11] S. Lin and D. J. Costello, Jr., Error Control Coding, Pearson
Education International, 2004.

[12] F. J. Mac Williams and N. J. A. Sloane, The Theory of Error-

Correcting Codes, North-Holland Publishing Company, 1977.
[13] S. A. Vanstone and P. C. van Oorschot, An Introduction to Error-

Correcting Codes with Applications, Norwell, MA: Kluwer, 1989.

[14] J. A. Goguen, J. Meseguer, “Security policies and security models”.
IEEE Symposium on Security and Privacy, pp. 11–20 (1982).

