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Abstract— Since the coronavirus was first discovered in Wuhan, it has widely spread and was finally declared a global pandemic by the 

WHO. Image processing plays an essential role in examining the lungs of affected patients. Computed Tomography (CT) and X-ray 

images have been popularly used to examine the lungs of COVID-19 patients. This research aims to design a simple Convolution Neural 

Network (CNN) architecture called SCOV-CNN for the classification of the virus based on CT images and implementation on the web-

based application. The data used in this work were CT images of 120 patients from hospitals in Brazil. SCOV-CNN was inspired by the 

LeNet architecture, but it has a deeper convolution and pooling layer structure. Combining seven and five kernel sizes for convolution 

and padding schemes can preserve the feature information from the images.  Furthermore, it has three fully connected (FC) layers with 

a dropout of 0.3 on each. In addition, the model was evaluated using the sensitivity, specificity, precision, F1 score, and ROC curve 

values. The results showed that the architecture we proposed was comparable to some prominent deep learning techniques in terms of 

accuracy (0.96), precision (0.98), and F1 score (0.95). The best model was integrated into a website-based system to help and facilitate 

the users' activities. We use Python Flask Pam tools as a web server on the server side and JavaScript for the User Interface (UI) Design. 
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I. INTRODUCTION

The coronavirus was first reported in Wuhan and has 

continued to spread to spread until it was officially named 

COVID-19 by the WHO. Until June 30, 2020, this virus has 
infected more than ten million with a mortality rate of five 

hundred thousand [1], which has continued to increase. 

Coronavirus infects the lungs and causes the accumulation of 

large quantities of fluid in the lower part. This condition 

causes shortness of breath, which may lead to death. The 

appearance of the lungs of patients infected with the virus is 

seen through medical images such as X-ray or CT images. 

Although determining whether a patient is infected using 

polymerase chain reaction (PCR), medical images are needed 

to analyze the lung's condition further. 

There are many famous deep learning architecture 

applications such as Residual Network (ResNet) [2], 

DenseNet [3]–[5], Visual Geometry Group Network 

(VGGNet) [6], GoogleNet [7], and AlexNet [8]. Deep 

learning is also widely used for several medical datasets such 

as Magnetic Resonance Imaging (MRI) in [9]–[12], 

Histopathology in[13]–[18], Computerized Tomography 

(CT), and Radiology [19]–[22].  In this work, a simple but 

effective design of CNN architecture was carried out to 

identify the CT images of COVID-19 patients. In computer 
vision and medical imaging, X-ray and CT images are used 

for diagnosis or prognosis[23]. Diagnosis is the actual 

recognition of the disease being suffered. In comparison, 

prognosis predicts the development of disease after it has been 

diagnosed. The potential to increase COVID-19 image data in 

both CT and X-ray, which will be processed in the parallel 

computing environment, was the background for this work. 

Meanwhile, the development of the vaccine is still in progress 

and has not been produced massively. Therefore, transmission 

still occurs in many countries, especially Indonesia.  
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One of the studies was carried out using medical X-ray 

images [24]. The support vector machine (SVM) approach as 

a classifier and multi-level thresholding for image feature 

extraction was used. Other studies using X-ray images were 

carried out in [25]. The fuzzy color was utilized to improve 

the image quality. Furthermore, two deep learning 

architectures, MobileNetV2 and SqueezeNet, were compared 

as feature extraction methods before classification with SVM. 

An automatic COVID-19 detection using X-ray images has 

also been proposed in [26]. In addition, a deep learning 
method with You Only Looks Once (YOLO) for object 

detection was applied. This method obtained 98% and 87% 

accuracy for binary and multi-class classification, 

respectively. The Bayesian method and SqueezeNet were 

integrated for COVID-19 detection using the X-ray images in 

[27]. This study claimed that their approach would reveal 

higher diagnosis accuracy.  

Meanwhile, using CT images to identify patients with 

COVID-19 has also been published in several journals. For 

example, it was used in [28], and the medical viewpoint was 

fully described. Furthermore, some studies that used CT 
images for analysis and classification, as proposed in [29], 

adopted texture feature extraction and SVM to classify the 

COVID-19 case. In addition, it was also used with the transfer 

learning method for classification, as published in [30]. 

Currently, the number of CT images obtained is minimal, and 

there are several similar images of COVID-19 and non-

COVID-19 patients. Therefore, a good feature extraction was 

needed. The other datasets from 120 patients in Brazilian 

hospitals were collected as reported [31]. The Towards 

Explainable Deep Neural Network (xDNN) was applied for 

classification and compared to deep learning methods such as 
ResNet, GoogleNet, VGG-16, and AlexNet. 

In our research, a simple CNN architecture was proposed, 

which performs feature extraction while producing a 

classification model for COVID-19 identification based on 

CT images. This proposed architecture was called SCOV-

CNN, an abbreviation for Simple COVID CNN. In addition, 

a web-based application tool was developed to implement this 

mode. Its structure was inspired by the LeNet architecture, the 

pioneer of classic CNN [32]. LeNet only has two convolutions, 

pooling and fully connected layers. Therefore, extracting 

high-level features increased the number of convolutions, 

pooling, and fully connected layers to seven, seven, and three, 
respectively. Details of the SCOV-CNN structure is described 

in the method section. 

This article was divided into some sections. Section I 

explained the introductory aspect, followed by section II, 

which explained the methodology with a brief narration of X-

ray and CT images used to analyze and identify COVID-19 

patients. Section III contains the results and comparison 

among the current studies on COVID-19. This work was 

discussed, and future direction was stated in section IV. 

II. MATERIALS AND METHOD 

A. Images for COVID-19 Identification 

X-ray images are common modalities that are obtained to 

analyze any chest disease. COVID-19 prediction using this 

data has been carried out in several studies. They are relatively 

lower-cost images and have been widely used for various 

diseases such as osteoporosis [33], breast cancer, and cardiac 

disease [34]. Although obtaining an image is relatively low-

cost, it is not as detailed as a CT when capturing information 

on certain parts, for example, smooth tissues. Therefore, a pre-

processing technique is needed for further studies using X-ray 

images. 

B. CT Images for COVID-19 Identification 

CT image is a type of image used to analyze diseases of the 

lungs. Its quality is usually better than X-ray; therefore, it was 

used in this work to obtain COVID and non-COVID images. 

An example of a CT image of the patients is shown in Figure 

1.  

 
Fig. 1  Example COVID-19 CT images (A) and non-COVID-19 CT images 

(B) 

 

CT data was obtained from a previous image dataset to 

develop a deep learning model from scratch research [30]. 

However, this number was too small. Therefore, other better 

representatives were sourced. The deep learning techniques 

will not function properly with limited data. Consequently, we 

collected another CT image dataset to develop a deep-learning 

model from scratch.  

TABLE I 

DETAIL CT IMAGES DATASET FROM PATIENTS [30] 

No Type of Data COVID-19 Non COVID-19 

1 Training 191 243 

2 Validation 60 58 

3 Testing 95 96 

Total 346 397 

 

As the additional dataset, CT resources from some patients 

in Brazilian hospitals were also obtained [31]. There were 120 
patients, 60 infected by COVID-19, and 60 were not. A total 

of 2482 CT scan images were obtained, consisting of 1252 

infected or positive SARS-CoV-2 and 1230 from uninfected 

patients. Based on this dataset, separation into the training 

(85%), validation (10%), and testing (5%) were carried out. 

The detailed number of images of the dataset [30] and [31] is 

shown in Table 1 and Table 2. 

TABLE II 

DETAIL CT IMAGES DATASET FROM PATIENTS [31] 

No Type of Data COVID-19 Non COVID-19 

1 Training 1064 1044 

2 Validation 125 123 

3 Testing 63 63 

Total 1252 1230 
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C. Design SCOV-CNN 

Deep learning and designing CNN architecture are always 

challenging activities. For this research, an existing or a new 

architecture relevant to the problem was created. CNN can be 

a feature extractor [35] and a classifier. Therefore, SCOV-

CNN was introduced as a simple yet robust architecture for 

feature extraction, including a CT image classifier for 

identifying COVID-19 patients. Visually, the final SCOV-

CNN architecture is shown in Figure 2. 

 
Fig. 2  Proposed SCOV-CNN architectures 

 

The layers used were adopted from the LeNet architecture 

[32] and some preliminary studies with fewer layer structures. 

The differences between SCOV-CNN architecture and 

several developed architectures are presented in Table 3. The 

first layer was the input layer with an image size of three RGB 

channels and dimensions of 3 x 224 x 224. The SCOV-CNN 

architecture has seven convolution layers, followed by 

pooling for each. The combination of the convolution and 

pooling layers are shown in Figure 2. A neural network is a 
linear combination of neurons and the weights of related 

neurons. The result of this linear combination was 

transformed using the activation function. There was a ReLu 

activation function at each convolution layer, which was 

useful in avoiding vanishing gradients. The ReLu equation 

formula refers to equation (1). 

 ���� � �0 ;     for x � 0 
� ;    for � � 0   (1) 

Where x is the result of a linear combination, which will be 

zero when the result from the linear combination is 0. In 

addition, the ReLu value becomes x when the linear 
combination is positive. At convolution layers 1, 3, 5 and 7, 

the feature map was obtained by multiplying the input image 

with a 7x7 kernel. Meanwhile, for 2, 4 and 6, the kernel size 

used to form the feature map was 5x5. The output at the 

convolution layer used the same for padding. Therefore, the 

output dimensions did not change. The reason for 

implementing this padding mode was to preserve the input 

dimensions to minimize the loss of feature information. The 

image dimension reduction mechanism occurred in the 

pooling process with a stride of 2. This process causes the 

resulting output size to exceed the feature map image input. 

TABLE III 

SCOV-CNN AMONG DIFFERENT DEEP LEARNING ARCHITECTURES 

LeNet-5 

[32] 
AlexNet [8]  

VGGNet 

[6] 

ResNet 

[2] 

SCOV-CNN 

[our] 

input Input input input input 

Conv5-6 Conv11-96 Conv3-64 Conv7-

64 

Conv7-128 

Max 

pooling 

Max 

pooling 

Conv3-64 Conv3-

64 

Max pooling 

Conv5-6 Conv11-

256 

Max 

pooling 

Conv3-

64 

Conv5-256 

Max 

pooling 

Max 

pooling 

Conv3-128 Conv3-

64 

Max pooling 

LeNet-5 

[32] 
AlexNet [8]  

VGGNet 

[6] 

ResNet 

[2] 

SCOV-CNN 

[our] 

FC-120 Conv3-384 Conv3-128 Conv3-

64 

Conv7-512 

FC-84 Conv3-384 Max 

pooling 

Conv3-

64 

Max pooling 

Gaussian Max 

pooling 

Conv3-256 Conv3-

64 

Conv5-512 

 FC-4096 Conv3-256 Conv3-

128 

Max pooling 

 FC-4096 Conv3-256 Conv3-

128 

Conv7-256 

 SoftMax Max 

pooling 

Conv3-

128 

Max pooling 

  Conv3-512 Conv3-

128 

Conv5-256 

  Conv3-512 Conv3-

128 

Max pooling 

  Conv3-512 Conv3-

128 

Conv7-128 

  Max 

pooling 

Conv3-

128 

Max pooling 

  Conv3-512 Conv3-

128 

FC-1024 

  Conv3-512 Conv3-

128 

FC-512 

  Conv3-512 Conv3-

128 

FC-256 

  Max 

pooling 

Conv3-

128 

SoftMax 

  FC-4096 Conv3-

128 

 

  FC-4096 Conv3-

256 

 

  FC-1000 Conv3-

256 

 

  SoftMax Conv3-

256 

 

   Conv3-

256 

 

   Conv3-

256 

 

   Conv3-

256 

 

   Conv3-

256 

 

   Conv3-

256 

 

   Conv3-

256 

 

   Conv3-

256 

 

   Conv3-

256 
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LeNet-5 

[32] 
AlexNet [8]  

VGGNet 

[6] 

ResNet 

[2] 

SCOV-CNN 

[our] 

   Conv3-

256 

 

   Conv3-

512 

 

   Conv3-

512 

 

   Conv3-

512 

 

   Conv3-

512 

 

   Conv3-

512 

 

   Conv3-

512 

 

   Avg. 

Pooling 

 

   FC-1000  

   SoftMax  

 

Based on Figure 2, starting from the first to the seventh 

pooling layer, the extraction process was produced by SCOV-

CNN. The next is the three fully connected (FC) layers. Each 

had a dropout of 0.3, which plays a role in preventing the 

resulting model from overfitting. In the output section, the 

SoftMax function (eq. 2) was used due to the classification.  

 Softmax(�⃗) � ���(��)
∑ ���(��)� !"

  (2) 

SoftMax converted the numeric output value of the last linear 

layer into a probability value. Furthermore, it raised the natural 

number e with a certain numeric value (xi) and divided by the 

total power of the natural number e to the respective numerical 

values generated. With this function, the predicted class values 
will be proportionally compared with all the predicted values. 

The function with the highest probability value represents the 

predicted class. The architecture was trained with a 2000 epoch, 

32 mini batch-size per epoch, and 0.00001 learning rate. The 

SCOV-CNN detail parameters are shown in Table 4. 
TABLE IV 

DETAIL PARAMETER OF SCOV-CNN 

No Layers Dimension Parameters 

1 Input  3x224x224  0 

2 conv1 (n=7, m=7, l=3, k=128)  128x224x224  18.944 

3 Pooling1 128x112x112 0 

4 conv2 (n=5, m=5, l=128, 

k=256) 

256x112x112 819.456 

5 Pooling2 256x56x56 0 

6 conv3 (n=7, m=7, l=256, 

k=512) 

512x56x56 6.423.040 

7 Pooling3 256x56x56 0 

8 conv4 (n=5,m=5,l=512,k=512) 512x28x28 6.554.112 

9 Pooling4 256x56x56 0 

10 conv5(n=7,m=7,l=512,k=256) 256x14x14 6.422.784 

11 Pooling5 256x56x56 0 

12 conv6(n=5,m=5,l=256,k=256) 256x7x7 1.638.656 

13 Pooling6 256x56x56 0 

14 conv7(n=7,m=7,l=256,k=128) 128x3x3 1.605.760 

15 Flatten 128 0 

16 Dense (l=128, k=1024) 1024 132.096 

17 Dense (l=1024, k=512)  512 524.800 

18 Dense (l=512,k=256) 258 131.328 

19 Output (l=56,k=2) 2 514 

 Total  - 24.271.490 

D. Experiment Setup  

The experiment ran on Ubuntu 16.04 Operating System 

supported by Intel Core i7 16 cores @3GHz clock speed with 

128 GB of RAM. The training was supported by a triple 
Graphic Processing Unit (GPU) NVIDIA GTX-1080 server 

hardware resource with 8 GB memory per GPU. CUDA 9.0 

and ‘cudnn’ were used to support deep learning. This was 

carried out in parallel on the three GPUs using the multi-GPU 

model library, Keras 2.0 and TensorFlow 1.14.0. 

E. Evaluation  

The proposed Model developed through the training 

process was tested using data testing to ascertain its 
performance. In the medical field, for diagnosis, the 

sensitivity, specificity, and ROC graphs are commonly used 

metrics. The sensitivity and specificity value is formulated 

through equations (3) and (4), respectively. Meanwhile, for 

ROC, a graph between the True (TPR) and False Positive Rate 

(FPR) (5) was plotted. 

 sensitivity = recall =  TPR = 
#$

#$%&' (3)

  
 specificity � #'

#'%&$  (4) 
 FPR � 1− specificity �1 −  34

34%56   (5) 
The recall, precision and F1 score, were calculated and 

compared with those from the previous studies. The formula 

used for recall was similar to sensitivity. Meanwhile, 

precision and F1 score formulas are presented in equation (6) 

and (7). 

 precision = 1 −  
36

36%56   (6) 

 F1 score = 2× �8�9:;:<= ×8�9>??
�8�9;:<= %8�9>??    (7) 

III. RESULTS AND DISCUSSION  

A. Data Acquisition and Pre-processing 

Theoretically, variations in data will have an impact on the 

model’s ability to recognize new data under various 

conditions. Therefore, the augmentation process was 

implemented on both datasets [30] and [31]. For the pre-

processing step, some of the augmentations performed 
include clockwise rotation = 0.5, vertical flip, and horizontal 

flip. 

B. SCOV-CNN Training Progress 

The designed architecture produced the output dimensions 

for each layer and several parameters, as presented in Table 3. 

In total, the SCOV-CNN architecture revealed 24.271.490 

parameters. During the training process, with 2000 epochs 

and 0.00001 learning rate, the model performance was viewed 

and presented using the loss values for each epoch. The loss 
value in this work was calculated using categorical loss 

entropy with equation (8) Loss = -∑ @A × log(@DE)'AFG   (8) 

where N is the output size as the number of scalar value in 

the model output, yi is the i-th scalar value in the model output 

and represents the target value. The validation loss value for 

the datasets from [30]and [31] are shown in Figure 3(A). 

Furthermore, the validation accuracy during training was 
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recorded, as illustrated in Figure 3 (B). Therefore, the loss of 

value and accuracy becomes the consideration for the next 

analysis and future studies. Based on the loss parameters and 

accuracy of the two datasets used, it was understood that the 

number and dataset used has an impact on the performance of 

the training process. Therefore, for further analysis of SCOV-

CNN performance, more focus will be on the dataset [31]. 

 

Fig. 3  Validation Loss and accuracy values for both data set [30] and [31]. 

 

C. Model Performance and Analysis 

Models generated from the SCOV-CNN architecture were 

saved in a file format with the extension .hdf5. Using this 
model, 63 test data were identified. The results were mapped 

into a confusion matrix and the sensitivity, specificity and 

ROC curve were further calculated. The test result 

configuration matrix is shown in Table V dataset [31] and 

performance analysis by ROC shown in Figure 4. 

 

 
Fig. 4 Receiver operating characteristic (ROC) curve for CT imagas 

classification 

TABLE V 

CONFUSION MATRIX 

 Predicted 

Actual COVID Non-COVID 
COVID 59 4 
Non-COVID 1 61 

 

The data obtained from this research was used to determine 

the position of this work against others. It was compared with 

previous studies, i.e., [31] and [36], which used similar data. 

The comparison is presented in Table 6. 

TABLE VI 

COMPARISON OF PERFORMANCE WITH PREVIOUS RESEARCH 

Method 

Metric 

Accuracy Recall Precision 
F1-

score 

DL-voting based 
[36] 

98,99% 99,20% 98,80% 99,00% 

xDNN [31] 97,38% 99,16% 95,53% 97,31% 
ResNet [31] 94,96% 93,00% 97,15% 95,03% 

Method 

Metric 

Accuracy Recall Precision 
F1-

score 

GoogleNet [31] 91,73% 90,20% 93,50% 91,82% 
VGG-16 [31] 94,96% 94,02% 95,43% 94,97% 
AlexNet [31] 93,75% 94,98% 92,28% 93,61% 
Decision Tree [31] 79,44% 76,81% 83,13% 79,84% 
Adabost [31] 95,16% 93,81% 96,71% 95,14% 
SCOV-CNN [our] 96,00% 98,00% 94,00% 95,93% 

 

Although the accuracy and F1 score obtained were 

relatively good, it was better when the model was tested with 
patient data from other countries. This was carried out to 

avoid overestimating the performance because in computer 

vision, differences in tools, sensors, and the environment 

affect the diversity of images obtained. Further analysis 

focuses on the misclassification which occurred on the 

SCOV-CNN model. Based on the confusion matrix in Table 

5 dataset [31], four CT COVID images were not identified as 

COVID. Conversely, only one CT image of non-COVID was 

identified as a COVID sample, as shown in Figure 5 for the 

detailed results. 

 
Fig. 5  Example of misclassification of CT images: (A, B, C, and D) are 

COVID images that predicted as non-COVID images. (E) is a non-COVID 

image that is predicted as a COVID image. 

 

Further analysis focuses on the misclassification that 

occurred in the SCOV-CNN model. Based on the confusion 

matrix in Table 5 dataset [31], four CT COVID images were 

not identified as COVID. Conversely, only one CT image of 

non-COVID was identified as a COVID sample, as shown in 

Figure 5 for the detailed results.  

Figure 5 shows four images of COVID that have been 

misclassified and, therefore, were predicted to be non-COVID. 
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When viewed at a glance by non-experts, the four images do 

not show clear COVID features in patients' lungs. Conversely, 

the misclassification of one detected image was thought to be 

due to fluid spots in the lungs, as indicated by the arrow. 

However, this certainly requires further analysis from a 

radiologist or pulmonologist. 

D. Model Implementation  

The good models were best saved in the. hdf5 file format. 

Furthermore, they were integrated into a website-based 

system to help and facilitate the users' activities. In other for 

the model to be read and integrated, the Python Flask Pam 

tool was used as a web server on the server-side. Meanwhile, 

for the client-side, the application was carried out using a 

browser. The graphical User Interface (GUI) implementation 

is presented in Figure 6. 

 

     
Fig. 6  GUI for SCOV-CNN implementation: (A) homepage, (B) choose the 

image, (C) result of model prediction 

 

CT images are one of the modalities used for the 
identification of COVID. Two datasets were used in this work, 

namely patient data from [30] and [31]. After preliminary 

research and considering the loss and accuracy values, the 

dataset in [31] was used. It consisted of 60 CT image data 

infected with COVID, comprising of 32 men and 20 women. 

Meanwhile, that of the uninfected patients was obtained from 

30 men and women.  

The SCOV-CNN architecture designed in this work was 

different from that of many architectures developed today, 

which is seen in Table 3. The inspiration for this design was 

LeNet [32], which was too simple to carry out feature 

extraction of CT images. Finally, the proposed architecture is 
presented in Figure 2. After the training process, the model 

obtained was tested on 63 new data using dataset, which was 

seen in Table 5. According to the confusion matrix in Table 5 

dataset [31], the performance level using the Receiver 

Operating Characteristic (ROC) curve was visualized. Figure 

4 showed the performance of SCOV-CNN using ROC curve. 

The results were further compared with other architectural 

designs by comparing several parameters such as accuracy, 

recall, precision and F1 score. Based on the results obtained 

in Table 5, SCOV-CNN architecture was quite competitive. It 

obtained 96.00%, 98.00%, and 95.93% in terms of accuracy, 

precision, and F1 score, respectively, among other supervised 

learning. However, it was slightly better than prominent deep 

learning architectures such as ResNet, VGG-16, GoogleNet 

and AlexNet. 

Compared to previous architectures such as VGG-16 with 
138.4 million parameters and VGG-16 with 147.7 million 

total parameters [6], SCOV-CNN is more efficient with 

around 24 million. Automatically, the model training process 

will be faster. With the same dataset, research with CT images 

produces an accuracy of 94.96% [31]. So, SCOV-CNN 

outperformed with 96,00% accuracy. AlexNet [8], with 

several parameters of around 60 million, can only produce 

93.75% [31]accuracy with the same dataset. In this study, the 

proposed SCOV-CNN is still better than ResNet [37], which 

has parameters varying between 25 - 60 million with an 

accuracy obtained of 94.96% [31]. Meanwhile, for XDNN 
and DL-voting-based, SCOV-CNN still needs more accuracy.  

An architecture that is too complex is too fit to the dataset 

during training so that it has the potential to cause overfitting 

when tested with data testing. SCOV-CNN proposes a simple 

convolution layer considering that the availability of medical 

image datasets is also limited. SCOV-CNN also uses a 

combination of layers with a size of 5x5 and 7x7 refers to 

previous work [38] and a padding scheme [39] so that the 

formation of a convolution map can retain information from 

the source image.  

In terms of the feature extraction process, the convolution 
approach is capable of extracting basic features such as image 

edges on the initial convolution layer up to high level features. 

This capability has made CNN currently the state of the art in 

the field of image recognition compared to several hand-

crafted feature extraction methods such as morphology, color 

or texture based. However, the main issue in the medical field 

is the availability of limited datasets so that for future research, 

strategic transfer learning is worth considering as a deep 

learning approach with little data. 

In addition, cross evaluation was carried out to avoid 

overestimation of this model. After being tested against other 

data, the accuracy dropped significantly by 54.45%. This 
shows that the size and diversity of the datasets have an 

important role and are needed to obtain a robust model for the 

various datasets. 

Figure 6 is a Graphic User Interface (GUI), which applied the 

best model stored to predict CT images data. Figure 6(A) is the 

homepage of the application. In this section, users were asked to 

upload one CT image in .jpg, .jpeg or .png formats. The selected 

image was displayed after using a CT image as shown in Figure 

6(B). At the bottom, there was a button” PREDICT IMAGE” and 

the prediction result for” COVID” appeared after the user presses 

the button, as shown in Figure 6 (C). 

IV. CONCLUSIONS 

The SCOV-CNN architecture has been successfully 

designed and is powerful enough to extract and identify 

COVID based on CT images. The resulting model was 

compared to prominent deep-learning architecture. This 
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architecture has the potential to be developed and applied to a 

web-based GUI application, making it easier for users to 

apply this model. In addition, it was concluded that the CT 

image sampling method, tools, and environment play an 

essential role in producing good data quality; therefore, the 

model will be more robust. 
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