
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage :  www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON 

INFORMATICS 
VISUALIZATION

Solar Powered Vibration Propagation Analysis System using 
nRF24l01 based WSN and FRBR 

Wirarama Wedashwara a,*, Made Sutha Yadnya b, I Wayan Sudiarta c, I Wayan Agus Arimbawa d,  
Tatang Mulyana e 

a Deparment of Informatics Engineering, University of Mataram, Mataram, Indonesia 
b Department of Electrical Engineering, University of Mataram, Mataram, Indonesia 

c Department of Physics, University of Mataram, Mataram, Indonesia 
d Department of Technology Management, Economics, and Policy, Seoul National University, Seoul, Republic of Korea 

e Department of Information System, Telkom University, Bandung, Indonesia 
Corresponding author: *wirarama@unram.ac.id 

 
 
Abstract— Prevention of the effects caused by natural disasters such as earthquakes and landslides requires analysis of vibration 
propagation. In outdoor applications, internet sources such as WIFI are not always available, so it requires alternative data 
communications such as nRF24l01. The system also requires a portable power source such as solar power. This research aims to develop 
a vibration propagation analysis system based on the nRF24l01 wireless sensor network and solar power by implementing the fuzzy 
rule-based regression (FRBR) algorithm. The system consists of two piezoelectric and nrf24l01 vibration sensors. The system also uses 
a third node equipped with temperature and soil moisture sensors, air temperature and humidity, and light intensity as environmental 
variables. The evaluation results show the Quality of Services (QoS) results with a throughput of 99.564%, PDR 99.675%, and a delay 
of 0.0073s. The Fuzzy Association Rule (FAR) extraction results yield nine rules with average support of 0.319 and confidence of 1 for 
vibration propagation. The availability of solar power was evaluated with an average current value of 0.250A and a voltage of 3.266V. 
The results of FRBR are based on the propagation of the vibration that propagated and produced a mean square error (MSE) of 0.141 
and a mean absolute error (MAE) of 0.165. The correlation matrix and FAR results show that only soil moisture has a major effect on 
the magnitude and duration of propagation. However, other variables can regress soil moisture with MSE 0.232 and MAE 0.287. 
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I. INTRODUCTION 

Prevention of the effects caused by natural disasters such 
as earthquakes and landslides requires analysis of vibration 
propagation [1]. Vibration measurements can be measured 
using a vibration sensor such as a piezoelectric sensor [2]. The 
propagation can be determined by comparing the source and 
destination vibrations [3], [4]. In outdoor applications, 
internet sources such as WIFI are not always available [5], so 
alternative data communications such as nRF24l01 are 
needed [6]–[8]. The system also requires a portable power 
source such as solar power [9], [10]. Vibration measurements 
can be measured using a vibration sensor such as a 
piezoelectric sensor. Its propagation can be determined by 
comparing the source and propagation vibrations so that the 

node can be installed anywhere if it is within the range of 
nRF24l01 and there is sunlight for charging the battery. 

This study aims to develop a vibration propagation analysis 
system based on the nRF24l01 wireless sensor network, solar-
powered, and data analysis using a fuzzy rule-based 
regression (FRBR) algorithm. The system consists of two 
piezoelectric and nrf24l01 vibration sensors. The system also 
uses a third node equipped with temperature and soil moisture 
sensors, air temperature and humidity, and light intensity as 
environmental variables. 

System evaluation from the functional side includes 
analysis of the Internet of Things (IoT)[11], Quality of 
Service (QoS) [12] , and solar power availability. The main 
evaluation of the research in testing the algorithm includes a 
description of the data collected from the IoT nodes, the 
correlation matrix of the data collected from the IoT nodes 
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and 6 test schemes and rules, and an analysis of the regression 
results. The system will be tested by performing vibrations on 
the source node and comparing it with the vibrations that 
propagate to the second node. The tests were carried out under 
various weather conditions, both air and soil conditions. The 
vibration simulation is only done manually using the 
pounding of the feet from various heights and human body 
weight. The test was carried out for two days by comparing 
various vibrations, temperature conditions, and soil moisture. 

The research focuses on testing IoT devices and regression 
results on the magnitude of the vibration that propagates. The 
study did not specifically discuss environmental aspects such 
as soil conditions and creating vibrations [13]. The nRF24l01 
network topology used is a star topology with data nodes one 
and two containing piezoelectric sensors sending data to node 
three containing environmental sensors. 

Research related to earthquake detection using IoT has 
been carried out previously to develop a low-cost notification 
system [14], early warning using a smart meter [15] , and data 
transmission using MQTT [16]. All three studies focused on 
developing a single device and did not detect vibration 
propagation. This study uses two devices to detect 
propagation and environmental conditions' influence on 
propagation's magnitude. 

Research related to the use of piezoelectric vibration 
sensors and nRF24l01 has been carried out for Medical 
Electromyography [17] and rolling bearings [18]. Both 
studies focus on applications in medical devices. The 
proposed research focuses on vibration propagation in the soil. 
Vibration propagation in the soil has differences based on soil 
conditions influenced by the environment. 

Research on the development of an algorithm to detect 
earthquakes has been carried out using the Gaussian process 
for post-earthquake building conditions [19], sequential 
regression-based predictive mean matching to fill in the 
missing data due to data communication disturbances [20], 
and magnitude relation regression for Sudan territory [21]. 

II. MATERIALS AND METHOD 

Figure 1 shows an overview of the system. The system 
consists of two vibration nodes and an environment node. The 
environment node consists of ambient temperature and 
humidity sensors, light intensity sensors, and soil temperature 
sensors. The environment node serves to determine the 
relationship between environmental conditions and the 
conditions on the vibration node. Air temperature, humidity, 
light intensity, and soil temperature were chosen because they 
affect soil moisture. 

The two vibration nodes consist of a vibration sensor and a 
soil humidity sensor. The main function of the vibration node 
is to measure the vibration propagation from source to 
destination. The vibration sensor compares the ground 
vibration at the source to the destination not only once but the 
duration until the vibration subsides. Both vibration nodes are 
equipped with soil humidity to determine the effect of soil 
moisture on vibration propagation. Soil moisture was chosen 
because it is a variable that the sensor can measure. Soil 
moisture is also a test scenario by comparing different soil 
moisture conditions from source to destination nodes—for 
example, the wet source node and dry destination or both wet. 

 

 
Fig. 1  General View of The System 

 
Figure 2 shows a flowchart of the system. The system starts 

with the preparation of IoT devices, land, and water. Then, 
testing with different soil moisture scenarios was carried out 
at the source and destination nodes. This is done under 
different environmental conditions to test changes in soil 
moisture that will cause differences in vibration intensity 
between the source and destination nodes. 

 

 
Fig. 2  Flowchart of the system 
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Vibration testing is carried out by manual stomping and a 
machine drill on the ground. Footsteps are used to simulate 
instantaneous vibrations, while machine drills simulate 
continuous vibrations. The test is carried out until all vibration 
scenarios are periodically carried out at different soil moisture 
and environmental conditions. The collected data is processed 
into a Fuzzy Object-Oriented Database (FOOD) developed in 
previous research [22]. FOOD is then assembled into a Fuzzy 
Association Rule (FAR) using a FAR extractor. Furthermore, 
FARM evaluation is carried out, namely support and 
confidence. The extraction process is carried out until the 
support and confidence threshold values are reached. 

Fuzzy Rule-Based Regression (FRBR) used in this study 
uses an algorithm that has been developed by the previous 
author [23]. The rule-based regression process is carried out 
with environmental conditions as precedent and vibration 
propagation dependent. Regression in this study was carried 
out in two stages. The first regression is the influence of the 
environment on soil moisture. The second and major 
regression is vibration propagation based on soil moisture 
conditions, so this research is expected to estimate the level 
of vibration propagation based on environmental patterns that 
affect the soil. 

III. RESULTS AND DISCUSSION 

A. Developed IoT Nodes 

Figure 3 shows the electrical schematic of the vibration 
node. The components consist of Arduino nano as a 
microcontroller and nRF24L01 as a data communication 
module. nRF24L01 is connected to 3.3v and other digital 
inputs. nRF24L01 on both vibration nodes only sends data to 
the environment node, which will upload data to the internet 
via the GSM module. 

 
Fig. 3  Electrical Scheme of The Vibration Node 

The first input is a piezoelectric vibration sensor to measure 
vibration. The piezoelectric vibration sensor is connected via 
analogue 0 as input, power supply, and ground. The second 
input is a soil moisture sensor connected via an analog to 
digital converter module to measure soil moisture. The soil 

moisture sensor is connected to the Arduino nano via analog 
one and 5v and the power supply. 

The vibration node is also connected to the TP4056 
charging module to connect a small solar panel and a 18650 
battery with a capacity of 1.2 Ah and a voltage of 3.7v. The 
solar power source allows the system to run completely 
wirelessly for both the power source and data communication 
media. 

Figure 4 shows the electrical schematic of the environment 
node. The environment node functions to collect data related 
to the environment and connects to the internet via the GSM 
module SIM800L. Internet access via GSM allows the system 
to run without depending on the availability of WIFI to be 
applied in outdoor applications. SIM800L requires a step-up 
module to increase the voltage from 3.7v to 4.2v required in 
its operation. 

 
Fig. 4  Electrical Scheme of The Environment Node 

The environment node is also connected to the nRF24L01 
to receive data from the vibration node and upload it to the 
internet via the GSM module. NRF24L01 on the environment 
node waits for data from the two vibration nodes and uploads 
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it together with data from the three sensors on the 
environment node to the internet in the form of one line of text 
and is read by a script on the data storage server. The input is 
BH1750 which is the light intensity sensor, DHT11 is the 
temperature and humidity of the air, and DS18B20 is the soil 
temperature sensor. BH1750 and DS18B20 are connected to 
the analogue input with a voltage of 5v. DHT11 is connected 
to a digital input with a voltage of 5v. The three sensors are 
connected to a 5v voltage to be paralleled with a single power 
source. 

The TP4056 is connected to two solar panels and two 
18650 batteries in parallel to maximize capacity. The solar 
panels arranged in parallel allow a current supply of up to 2A. 
The 18650 batteries in parallel allows a capacity of up to 2.4 
Ah. The environmental node's heavy electrical load is 
expected to continue operating while uploading data. 

 

  
(a) node 1 and 2 (b) node 3 

Fig. 5  Actual view of IoT nodes 

 
Figure (a) of 5 shows a pair of vibration nodes that will 

serve as the source and destination of vibration propagation. 
The electrical circuit is connected by a 30 AWG cable 
soldered on a 5×7cm single layer PCB. Each component is 
connected to a female header so that it can be replaced easily 
if there is component damage. The power source is mounted 
on a different PCB and mounted on the enclosure box. Figure 
(b) of 5 shows the result of the environment node, which 
functions to measure the environmental condition sensor 
input and uploads data to the internet via the GSM module. 
The environment node circuit relates to a 30 AWG cable 
soldered to a 5×7cm single layer PCB. The environment node 
is placed in a larger enclosure due to the placement of two 
batteries and solar panels. 

B. Evaluation of the QoS 

Table 1 shows the refresh rate and sensor packets 
connected to each IoT Node. Nodes 1 and 2 are vibration 
nodes connected to a piezoelectric vibration sensor with a 
refresh rate of 200ms and a soil moisture sensor with 500ms. 
So, a total of two nodes generates twice 700ms, which is 
1400ms. The piezoelectric vibration sensor measures 
vibrations with resistance between 0 to 1023. The greater the 
resistance value, the greater the resistance value. The soil 
moisture sensor also has a humidity value based on resistance 
from 0 to 950. Resistance values 0~300 indicate dry soil, 
300~700 indicate moistness, and 700~950 indicate conditions 
in water [24]. The piezoelectric vibration sensor uses 4 bytes, 
and the soil moisture sensor uses 3 bytes from the data packet. 
So, nodes 1 and 2 use a total of twice 7 bytes which is 14 
bytes. 

The environment node is connected to a light intensity 
sensor, DHT11 and a soil temperature sensor, each with a 
1000ms refresh rate. So, the total has a 3s refresh rate. The 

light intensity sensor has a value from 0 to 65535 Lux. The 
higher the Lux value, the brighter it is. DHT11 produces 
temperature values between 00.00 to 50.00 Celsius degree and 
humidity of 100%. The DS18B20 produces temperature 
values from -55 to 125 Celsius degree. The total data packet 
used is 31 bytes with a 4400ms refresh rate. An example of 
the format of the packet being sent appears at the very bottom 
of the character column. The type of data sent is char with a 
fixed size of 32. So, to save data packets and ease 
programming work on the microcontroller side, there is no 
separator, and the value of each variable is called through an 
index array. 

TABLE I 
REFRESH RATE AND PACKET SIZE OF EACH NODE 

N Sensor 
RR 
(ms) 

Characters 
PS 

(byte) 

1 
Piezo Electric 
Vibration Sensor (Ω) 

200 0000~1023 4

Soil Moisture (Ω) 500 000~950 3

2 
Piezo Electric 
Vibration Sensor (Ω) 

200 0000~1023 4

Soil Moisture (Ω) 500 000~950 3

3 
Light Intensity (Lux) 1000 00001~65535 5
DHT11 (oC and %) 1000 00.00000~50.00100 8
DS18B20 (oC) 1000 -055~+125 4

 4400
000100100010010000101.0100
1+001 

31

 
Table 2 shows the results of the QoS evaluation of the star 

topology used in this study. The use of star topology has been 
investigated more efficiently for distances centered in 
previous studies [25]. Each node is separated by 400m, 40% 
of the maximum distance of nRF24l01. So that the closer 
distance results in higher throughput (99.564%) and PDR 
(99.675%) values than previous studies. However, the delay 
value is higher (0.0073ms) because the data packets sent are 
bigger. 

TABLE II 
QOS OF STAR TOPOLOGY 

Node Throughput (%) PDR (%) Delay (ms) 
1 99.672 99.865 0.003
2 99.673 99.863 0.006
3 99.347 99.298 0.013

99.564 99.675 0.007
 
Table 3 shows the availability of solar power for one day 

to ensure the system can run fully in sunny weather conditions. 
The evaluation also ensures the relationship between data 
communication quality and energy availability. Light 
intensity was measured using BH1750, and the temperature 
was measured using DHT11. Current is measured using 
ACS712, and voltage is measured using a 32V DC Voltage 
sensor using a tool developed in previous research [26]. 

TABLE III 
EVALUATION OF SOLAR AVAILABILITY 

T(h) L (lux) 
Temp 

oC 
Solar Cells Batteries 

Thr (%) 
PDR 
(%) 

Dly 
(s) C(A) V(V) C(A) V(V) 

08-11 14678 28.33 0.543 4.219 0.231 3.713 99.923 99.312 0.001 
11-16 45021 31.82 0.381 5.201 0.223 3.614 99.321 99.613 0.002 
16-18 14987 30.22 0.286 4.201 0.291 3.351 99.872 99.312 0.002 
18-20 5346 28.34 0.156 0.142 0.248 3.113 99.892 98.243 0.012 
20-05 123 27.68 0 0 0.234 2.968 99.891 94.221 0.023 
05-08 12983 28.26 0.356 4.354 0.242 2.891 99.888 95.399 0.014 
08-11 15012 28.16 0.657 4.134 0.274 3.143 99.634 97.692 0.012 
11-16 45021 29.31 0.478 5.456 0.254 3.332 99.242 99.376 0.013 
 19146 29.01 0.357 3.46 0.250 3.266 99.708 97.896 0.010 
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Like the pattern in previous research [26], the energy 
produced by solar panels decreases when the light intensity is 
reduced and the air temperature is too high. However, it can 
still be recharged the next day when light conditions improve. 
Throughput is not affected, and PDR and delay have little 
effect when battery voltage drops. Because it uses a step-up 
module, the voltage received by the sensor can still be held 
stable. 

Data translation is done by fuzzy rule-based clustering 
(FRBC) [27]. The data collected for one week in the cluster is 
divided into high and low irrigation water flows. Watering is 
done without delay, which is set on the programming 
manually. Watering is carried out if the soil moisture is less 
than 100Ω and stops when it reaches 500Ω. The research 
focuses on prototyping tools, so calibration has not been 
carried out for ideal irrigation for certain crops. The 
membership function used is a gaussian asymmetric, which 
involves the lower standard deviation(σ1), upper(σ2) and 
means(μ[19], [28]. 

C. Evaluation of Collected Data 

Table 4 shows six scenarios carried out to obtain vibration 
propagation data. Each scenario (Sk) shows a combination of 
source vibration magnitude (VS), vibration duration (VD), 
source soil moisture (SHS), destination soil moisture (SHD) 
to measure the magnitude of the vibration that propagates to 
the destination (VD) and its duration (VDD). The scenarios 
are separated based on three vibration magnitudes and their 
duration (short and long) so that there are six scenarios. Each 
scenario is further divided into three types of soil moisture 
variations: dry, only wet, and equally wet sources, resulting 
in 18 sub scenarios. Each of the 18 scenarios was tested 20 
times for a total of 360 tests. 

Scenarios 1 and 2 show small vibrations. Scenario 1 for a 
short duration reduces vibration to the destination by 15.972% 
for equally dry conditions, 23.288% for the wet side and 
19.205% for both wet conditions. The vibration duration did 
not differ much for the three conditions of soil moisture, 
which was reduced by an average of up to 26.407%. Scenario 
2, with small vibrations and long duration, reduced the 
average vibration that propagates to 40.071%. On the other 
hand, the wet humidity condition still produces the highest 
value, which is 44.371%. The vibration duration lasts greater 
than an average of 99.214%. 

Scenarios 3 and 4 show the simulation results of the 
moderate vibrations. Scenario 3 for a short duration resulted 
in vibration propagation with an average of 47.971%, which 
increased 28.483% from scenario 1. The duration did not 
increase; an average of 30.824% only increased by 4.416% 
from scenario 1. Scenario 4 for long-duration resulted in an 
average reduction vibration of 58.654%, which is an increase 
of 18.584% from scenario 2. The duration is smaller than 
scenario 2 with an average of 87.111%, reduced by 12.103%. 

Scenarios 5 and 6 show the simulation result of the big 
vibrations. Scenario 5 for a short duration produces vibration 
propagation with an average of 63.651%, an increase of 
15.680% from scenario 3. The vibration duration produces an 
average of 55.551%, increasing by 24.727% from scenario 3. 
Scenario 6 for a long duration produces the highest average 
propagation, namely 80.045% increased by 21.391% from 
scenario 4. The propagation duration to last up to an average 

of 99.625% increased by 12.513% from scenario four and 
only 0.411% difference from scenario 2. 

TABLE IV 
COLLECTED DATA BASED ON EVALUATION SCENARIO 

s VS (Ω) VDS (ms) SHS (Ω) SHD (Ω) VD (Ω) VDD (ms) 

1 144 1623 201 213 23 456 
146 1982 678 211 34 502 
151 1973 687 672 29 509 

2 153 57256 212 221 56 56789 
151 57829 692 232 67 57126 
158 58192 688 689 62 58002 

3 453 1926 208 203 172 620 
461 2014 682 205 273 612 
458 2141 689 682 214 640 

4 437 58201 208 202 254 50278 
442 58312 698 223 268 51021 
451 58321 691 682 258 51002 

5 834 2237 204 207 535 1283 
842 2415 697 212 536 1289 
852 2321 676 682 538 1298 

6 858 57629 206 207 678 58920 
861 58267 687 208 698 58932 
852 58301 686 689 682 58289 
 
Table 5 shows the correlation matrix between the variables 

tested in the study. The variables consist of SH (soil humidity), 
ST (Soil Temperature), L (Light Intensity), AT(Ambient 
Temperature) and AH(Ambient Humidity). Meanwhile, VS, 
VD, VDS, VDD are following the explanation in table 4. The 
green column shows the correlation above 0.5. VS and VD 
have the highest correlation, namely 0.987, followed by VDS 
and VDD with a value of 0.986. AH also has a high correlation 
with AT. 

TABLE V 
CORRELATION MATRIX 

 SH ST L AT AH VS VD VDS VDD 

SH 1 0.456 0.236 0.237 0.345 0.345 0.656 0.357 0.768 
ST 0.456 1 0.145 0.456 0.245 0.125 0.104 0.102 0.101 
L 0.236 0.145 1 0.342 0.265 -0.367 -0.325 -0.289 -0.223 
AT 0.237 0.456 0.342 1 0.563 -0.365 -0.356 -0.345 -0.323 
AH 0.345 0.245 0.265 0.563 1 -0.267 -0.178 -0.189 -0.188 
VS 0.345 0.125 -0.367 -0.365 -0.267 1 0.987 -0.345 -0.456 
VD 0.656 0.104 -0.325 -0.356 -0.178 0.987 1 -0.537 -0.453 
VDS 0.357 0.102 -0.289 -0.345 -0.189 -0.345 -0.537 1 0.986 
VDD 0.768 0.101 -0.223 -0.323 -0.188 -0.456 -0.453 0.986 1 

 
The red column shows a low correlation below 0.2. VS, VD, 

VDS, VDD are the values in the scenario so that they have a 
low correlation with other variables except for SH, 0.656 with 
VDD and 0.768 with VDD. L also has a low correlation with 
SH. The yellow column indicates an intermediate correlation 
between 0.2 and 0.5. Environmental variables have a 
moderate correlation with each other. SH in the data obtained 
in this study did not show a high correlation with ST. 

D. Evaluation of FARM 

Table 6 shows the results of the FAR and its evaluation, 
namely support and confidence. Table 6 shows the rules 
sorted by the size of the support. Rules 1 to 3 show the 
precedent relation VS and VDS to the dependent VD and VDD, 
with the numbers after that showing the quantities ordered by 
the fuzzy membership function [29], [30]. The support value 
reaches an average of 0.319, and confidence reaches a value 
of 1; namely, the absolute precedent and dependent 
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relationship occur. Rules 4 to 6 show a similar precedent 
relationship with the addition of SH, which in table 5 shows a 
high correlation. However, the addition of SH lowers support 
to an average of 0.270 and a confidence value of 0.818. 

Rules 7 to 9 show the environmental conditions ST, AH, 
AT, and L as precedent and SH as a dependent. This 
relationship produces average support of 0.127 and 
confidence of 0.803. Rule 9 is the longest precedent, but the 
support is only 0.101, with better confidence than rules 7 and 
8, 0.893. Rule 9 is the only rule involving L, which has the 
lowest correlation to SH (table 5). Overall, FAR results show 
an average of 0.239 support and 0.874 confidence. 

TABLE VI 
EXTRACTED RULES AND EVALUATION 

Inde
x 

Precedent Dependent Support Conf 

1 {VS1,VDS1} {VD1,,VDD1} 0.324 1 
2 {VS2,VDS2} {VD3,,VDD3} 0.316 1 
3 {VS3,VDS3} {VD3,,VDD3} 0.318 1 
4 {VS3,VDS3,SH2} {VD3,,VDD3} 0.276 0.822 
5 {VS2,VDS2,SH2} {VD2,,VDD2} 0.271 0.819 
6 {VS1,VDS1,SH2} {VD1,,VDD1} 0.262 0.813 
7 {ST1,AH1} {SH1} 0.148 0.725 
8 {ST2,AH2,AT2} {SH2} 0.132 0.792 
9 {ST2,AH2,AT2,L2} {SH2} 0.101 0.893 
Average 0.239 0.874 

 
Table 7 shows the results of the regression using FRBR. 

The test is divided into five conditions based on the regression 
rules (Table 6). Regression was tested using mean square 
error (MSE) and mean absolute error (MAE) [31], [32]. 
Conditions 1 and 3 show the same results, namely MSE 0.141 
and MAE 0.165. This is because FRBR will choose the rule 
with the highest support and confidence, so rules 1 to 3 are 
selected. Condition four supports this, which has an 
increasing error with MSE 0.362 and MAE 0.387 because it 
does not involve rules 1 to 3. 

TABLE VII 
REGRESSION RESULTS OF FRBR 

i Rules MSE MAE 
1 All 0.141 0.165 
2 1~3 0.141 0.165 
3 1~6 0.141 0.165 
4 4~6 0.362 0.387 
5 7~8 0.232 0.287 

 
The correlation matrix and FAR results show that only soil 

moisture has a major effect on the magnitude and duration of 
propagation. However, other variables can regress the soil 
moisture as indicated by condition 5 with MSE 0.232 and 
MAE 0.287. This additional feature can predict vibration 
conditions if certain weather conditions persist. 

IV. CONCLUSION 

Research has developed a solar-powered nRF24L01-based 
vibration propagation analysis system with regression 
implementation using FRBR. The evaluation results show the 
Quality of Services (QoS) results with a throughput of 
99.564%, PDR 99.675%, and a delay of 0.0073s. The Fuzzy 
Association Rule (FAR) extraction results yield nine rules 
with average support of 0.319 and confidence of 1 for 
vibration propagation. The availability of solar power has 

been tested with an average current value of 0.250A and a 
voltage of 3.266V. The results of FRBR were carried out on 
the magnitude of the vibration that propagated and produced 
a mean square error (MSE) of 0.141 and a mean absolute error 
(MAE) of 0.165. The correlation matrix and FAR results 
show that only soil moisture has a major effect on the 
magnitude and duration of propagation. However, other 
variables can regress soil moisture with MSE 0.232 and MAE 
0.287. As an additional evaluation in the future, an analysis 
will be carried out using other variables such as the type of 
soil and the placement of the vibration sensor under the 
ground. 
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