












significance level of differences indicate significant 
differences in the parameters of Augmented R-Value for 
Multi-Class, Class Average Accuracy, and Hamming Loss. 

In general, the imbalance ratio and the number of attributes 
greatly affect the Augmented R-Value for Multi-Class, Class 
Average Accuracy, and Class Balance Accuracy parameters. 
As for Hamming Loss, the number of attributes that affect the 
most is then followed by the imbalance ratio. This study's 
results indicate a direct relationship between the effect of 
overlapping and multi-class imbalance on the accuracy of the 
classification results. Overlapping is more often ignored when 
compared to class imbalance. However, it can be seen from 
the results of the study that the higher the overlap (which 
means that the overlap is more serious), the lower the 
accuracy of the classification results obtained. 

The interesting thing is that for Class Balance Accuracy, 
although the results show that the Hybrid Approach with 
Distance Feature gives better results than MultiRandBal, the 
differences are insignificant. This can be understood because 
the Class Balance Accuracy is a balance between the accuracy 
of each existing class. The determination of the sample from 
the safe region tends to accommodate the handling of multi-
class imbalance in the minority class. 

IV. CONCLUSION 

Based on the findings in Tables III, IV, and V, it is possible 
to conclude that both approaches have produced positive 
outcomes for handling multi-class imbalances. However, the 
results obtained by the Hybrid Approach with Distance 
Feature on several parameters are better. There are significant 
differences in the parameters of Augmented R-Value for 
Multi-Class, Class Average Accuracy, and Hamming Loss. 
As for the Class Balance Accuracy parameter, the difference 
obtained is not significant. 

Implementing the Distance Feature in the Hybrid 
Approach for determining samples in safe regions has proven 
effective. In addition to dealing with multi-class imbalance 
problems, it can also handle overlapping. Thus, this study also 
shows a new approach to the oversampling process in 
SMOTE. It is hoped that this research can develop methods 
that can provide better accuracy results on datasets with a 
large number of attributes. 
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