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Abstract— Although COVID-19 has severely affected the global economy, information technology (IT) employees managed to perform 

most of their work from home. Telecommuting and remote work have promoted a demand for IT services in various market sectors, 

including retail, entertainment, education, and healthcare. Consequently, computer and information experts are also in demand. 

However, producing IT, experts is difficult during a pandemic owing to limitations, such as the reduced enrollment of international 

students. Therefore, researching increasing software productivity is essential; this study proposes a code similarity determination model 

that utilizes augmented data filtering and ensemble strategies. This algorithm is the first automated development system for increasing 

software productivity that addresses the current situation—a worldwide shortage of software dramatically improves performance in 

various downstream natural language processing tasks (NLP). Unlike general-purpose pre-trained language models (PLMs), 

CodeBERT and GraphCodeBERT are PLMs that have learned both natural and programming languages. Hence, they are suitable as 

code similarity determination models. The data filtering process consists of three steps: (1) deduplication of data, (2) deletion of 

intersection, and (3) an exhaustive search. The best mating (BM) 25 and length normalization of BM25 (BM25L) algorithms were used 

to construct positive and negative pairs. The performance of the model was evaluated using the 5-fold cross-validation ensemble 

technique. Experiments demonstrate the effectiveness of the proposed method quantitatively. Moreover, we expect this method to be 

optimal for increasing software productivity in various NLP tasks. 
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I. INTRODUCTION 

Pretrained language models (PLMs) such as Bidirectional 

Encoder Representations from Transformers (BERT) [1], 

Generative Pre-Training  (GPT) [2], and eXtra Long 

NETwork (XLNET) [3], [4] have contributed to tremendous 

performance improvements in downstream tasks, such as 

machine reading comprehension, entity recognition, and 

relation extraction, of natural language processing (NLP) in 

recent years. These PLMs are based on the transformer 

architecture [5], and they are pretrained on a large 
unsupervised text corpus and then finetuned with training data 

in downstream tasks such as question answering [6], [7], 

named entity recognition [8] and relation extraction [9]. This 

pre-training and finetuning model approach in NLP has 

expedited pre-training development. 

CodeBERT [10] and GraphCodeBERT [11] are language 

models trained in a programming language (PL) and natural 

language (NL). These are PLMs that have been optimized 
such as for code search and document generation. Both 

models were pretrained on the CodeSearchNet dataset 

containing functions in six PLs as well as NLs’ documents. 

In the pre-training process, the former model was trained 

on objective functions, including standard masked language 

modeling (MLM), and replaced token detection (RTD) [12]. 

The latter model was trained on code representations using the 

semantic structure of the code. These code-aware specific 

PLMs, which have learned code representations, differ from 

general PLMs that have not learned code as they can classify 

the similarity when inputting a PL. Moreover, these PLMs are 
considered more general. 

Recently, a serious worldwide shortage of software 

developers and experts who can supply quality software has 

become evident [13], [14]. As the supply of software 
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developers is limited, having a method prepared in advance 

for analyzing, developing, and maintaining software based on 

an automated method is essential for increasing software 

productivity. In addition, many studies are being conducted in 

this field worldwide. As a first step, an algorithm that 

determines whether two codes can produce the same results is 

crucial for enhancing software productivity.  

Our research heavily involves the use of deep bimodal 

architectures trained on both PL and NL. Specifically, we 

used CodeBERT, GraphCodeBERT, CodeBERT-MLM 

(developed by Microsoft Research), and CodeBERTaPy. 
CodeBERT and CodeBERT-MLM were among the first 

research to create models that capture the semantic connection 

between NL and PL, such as Python, Java, JavaScript, etc. In 

the pre-training step, the input data consists of two sequences 

concatenated with a special token i.e. ����� ��, �
 , … , ��  ���� ��, �
, … , ��  ���� where 

segment ��� , �
, … , ���  denotes NL text and the segment ���, �
, … , ��� denotes a certain PL. This input is then passed 

through a standard BERT architecture, and the outputs of the 

model are the contextual vector representation of each token 
for both the language and the code component and the [CLS] 

token embedding containing the pooled sequence 

information. The pre-training objective functions include 

MLM and RTD, as we mentioned above. Both bimodal and 

unimodal data were used to train CodeBERT, and bimodal 

data was obtained from GitHub repositories where a code is 

paired with its description. CodeBERT [10] was then 

finetuned for downstream tasks such as code search and code-

to-text generation, and it achieved state-of-the-art 

performances in both tasks. GraphCodeBERT [11] followed 

CodeBERT, and it is a graph-based pre-trained model based 

on Transformer [5] for PL. It is one of the first works that 
leverages code structure to learn code representation to 

improve code understanding dramatically. The pre-training 

tasks for GraphCodeBERT are unique in that they include not 

only masked language modeling but also data flow edge 

prediction and the variable-alignment across source code and 

data flow to align representation between source code and 

data flow.  

Furthermore, the CodeSearchNet challenge [15] launched 

in 2020 actively encourages research in retrieving relevant 

code given an NL query. The organizers provide a corpus 

consisting of 99 NL queries with approximately 4000 expert 
relevance annotations of likely results. It also consists of 

automatically generated NL queries for 2 million code 

functions. A leaderboard was run, encouraging competition 

and advancement in this area of research. Another notable 

project that made use of deep learning for code understanding 

is the AlphaCode project [16] initiated by Deep Mind. 

AlphaCode aims to train deep learning models that understand 

code for code generation, specifically generating code 

solutions in various PLs to competitive coding problems from 

CodeForces. They approached the problem as a sequence-to-

sequence task, where given a problem statement in NL, a 
solution code string was generated. Thus, the researchers of 

AlphaCode made use of an encoder-decoder Transformer 

architecture [17] to solve the problem. This project also made 

its training dataset public, which came in very handy for us to 

use as an additional source of training data when fine-tuning 

our CodeBERT models for detecting code similarity.  

Despite the advancements in code and natural language 

understanding, there are not many existing works of literature 

on utilizing these architectures to classify code performing 

similar tasks directly. Instead, widely used approaches are 

text-based detection [18], token-based detection [19], which 

extracts a sequence of tokens using compiler-style source 

code transformation that is subsequently used for similarity 

matching, and tree-based detection [20], where the code is 

transformed to abstract syntax trees and are later used in tree 

sub matching algorithms for similarity identification and 

metrics based detection [21] that extracts a number of metrics 
from the source code fragments then comparing these metrics 

for detecting similarity. Another research is about using flow 

charts [22] to detect code similarity, but it is applied for cross-

language source code detection (i.e., detecting similarity even 

when source codes are written in different PLs). The 

aforementioned techniques do not rely on deep learning, but 

recently relatively simple deep learning-based code 

embedding techniques such as Code2Vec [23] were explored 

to embed codes for similar or clone code detection.  

For most code search systems being used in practice, it 

appears that simpler methods that do not involve deep neural 
networks, such as a cross encoder or a bi-encoder structure for 

classifying similarity, seem to be preferred. Our work shows 

that fine-tuning deep pre-trained language models that 

understand code performs efficiently on the task of code 

similarity detection and thus provides an incentive for using 

deep pre-trained models for future code similarity detection 

systems. 

In this study, we propose a language model system that can 

determine code similarity using an automated method. The 

three-step strategic data filtering process for effectively 

training a language model can eliminate duplication between 
training and testing. In addition, positive and negative pairs 

were generated using the best matching (BM25) [24] and 

length normalization of BM25 (BM25L) [25] algorithms of 

the Okapi system with proven performance. Moreover, the 

cross-validation ensemble method [26] enabled an accurate 

and effective performance in the model training process in 

which data imbalance existed.  

The contributions are as follows: 

 Three data filtering strategies for removing duplication 

in the training dataset are introduced. In addition, 

positive and negative pairs are obtained using the 

BM25 and BM25L algorithms. 
 CodeBERT and graphcodebert, pretrained on code 

representations, are finetuned. Then, the cross-

validation ensemble, verified when inferencing, is 

applied to extract a more effective performance. 

 The effectiveness of the proposed method is verified 

using quantitative experiments for single and ensemble 

models. 

II. MATERIALS AND METHOD 

In this section, we describe the following three crucial 

procedures (data preprocessing process, three filtering 

strategies, forming positive, and negative pairs), and finally, a 

cross-validated ensemble method for achieving performance 

from the ensembled results of a single model. Fig. 1 shows the 

overall schematic of the process. 
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Fig. 1  Scheme of the model’s training process by applying the proposed technique from the text input sequence 

 

A. Data Preprocessing 

Before the code data is fed as an input sequence of the 

model, cleaning the raw text must be performed because of 

the characteristic of the code. The code may be written in an 

unorganized manner by the coder or contain text information 

that is irrelevant to compilation. Especially, the existing typo 

information in the code is unnecessary, and it can act as a fatal 
factor in the model training procedure. First, unnecessary new 

lines and spaces are removed. Comments (sequences marked 

with ‘#’) written to help understand the code are also 

somewhat unnecessary for our training process. Hence, they 

are removed along with white spaces. 

B. Data Filtering Strategies 

Duplication of data may occur when using different 

datasets as training and test data. Therefore, a model trained 

with these duplicated features cannot perform an accurate 

evaluation. Before enhancing the model with additional data, 

we observed data duplication between the additional training 

data and the test data. Hence, filtering was performed with 

three strategies. Algorithm 1 describes the three-step data 

filtering strategies in Fig. 1 more effectively. 

1)  Deduplication of Data:  First, the data corresponding to 

A and B, and the TEST codes are loaded. The first filtering 

strategy filters overlapped sequence data using a hash table 
(HT). This method records all values of A in the HT and then 

checks whether these values exist in B; this is the most 

common and widely used method. For the first filtering of 

Algorithm 1 (1~6 lines), (1) the sequence input to the 

DEDUPLICATION function and initialized HT creates a new 

HT from the A, and (2) the new HT is compared with B to 

create First_filtered_codes (6 lines). Most duplicate data are 

filtered out in this process. 

2)  Deletion of Intersection:  Second, the purpose of the 

Second Filtering is to filter out data not completely filtered 

out by the HT owing to reasons such as trailing space. This 
includes spaces such as white spaces ‘ ’ in the right or left 

edge of sentences, tabs ‘\t’, In the second filtering of 

Algorithm 1 (7~10 lines), (1) the SIMPLIFY function 

concatenates all newlines existing in the character strings of 

the code. (2) All spaces and newlines before and after the 

character strings are removed. (3) Filtering is performed once 

more by taking the intersection of these filtered sequences of 

the test code and using first_filtered_codes to generate 

second_filtered_codes. 

3)   Exhaustive Search:  Most of the duplicated data are 

removed by the second filtering process. However, a method 

that completely eliminates duplication is required. Therefore, 
an exhaustive search is performed, and s and TEST_codes are 

mutually compared in the third filtering of Algorithm 1 to 

remove the few remaining duplicate data traces (11~20 lines). 

Now, the third_filtered_codes, which are used as the training 

data, are finally generated. 

C. Forming positive and negative pairs 
Then, the dataset that has been trimmed with the previous 

three preprocessing strategies should be composed of positive 

and negative pairs for the training process. One type of 

training data is positive pairs which can determine whether 
the two codes are similar, and the other is negative pairs which 

can determine whether the two codes are not similar. For 

negative samples, ranks are assigned after sorting the data in 

descending order based on the confidence score. BM25 

algorithm of the Okapi system, which is based on probabilistic 

retrieval research, is a ranking function utilized by search 

engines to rank matching sentences according to their 

relevance to a given query. For length normalization of 

BM25, BM25L, a newer variant to boost scores of very long 

documents and more effective than BM25, was proposed [25]. 

The Okapi BM25 scores a document � with respect to query 

sentence � containing keywords �� , … , �� as follows: 

�������, �� = � �������
�

� �
∙  "��� , �� ∙ �#� + 1�

"��� , �� + #� ∙ �& ∙  |�|()* +  1 − &� 

where f(��, �� is the term frequency of  �� in �, |�| is the 

length of the words, and ()*  is average document length.  #� (,) & are hyperparameters. 

������� = ln /0 −  ,���� + 0.5
,���� + 0.5 4 + 1 

The inverse document frequency (IDF) means how 

common or rare a word is in the total document set. ������� 

is consisted of IDF weight of the query term �� and ,���� is 

the number of documents containing ��, which is calculated 

as above. Using these algorithms, the volume of the original 

dataset was dramatically expanded, and we experimented 
with demonstrating the improved efficiency of the code 

similarity evaluation model. 

 
Algorithm 1 Efficient Data Filtering Strategies 

A = DATA1, B = DATA2 
Load TEST_codes  

procedure DEDUPLICATION(sequence, HT)  

→ Quick check if i is in HT 

1:     Read All A, B values  
2:     for i = 0 to len(A[i]) do 

3:           HT.add(A[i]) 

→ Build HT 

4:     for i = 0 to len(A[i]) do 

5:           if B[i] not in HT then 

6:                 First_filtered_codes.append(B[i]) 

→ First Filtering 

procedure SIMPLIFY(code) 
7:     return ‘’.join(code.split(‘\n’)).rstrip(‘ ’).strip() 
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procedure DELETE INTERSECTION(First_filtered_codes) 

8:     for i = 0 to len(First_filtered_codes[i]) do 

9:         if SIMPLIFY(First_filtered_codes[i]) not in 
INTERSECTION(TEST_codes) then 

10:               
Second_filtered_codes.append(First_filtered_codes[i]) 

→ Second Filtering 

procedure EXHAUSTIVE SEARCH(Second_filtered_codes) 
 
11:    for i = 0 to len (Second_filtered_codes[i]) do 

12:          USE_TOKEN = True 

13:          if Second_filtered_codes[i] in TEST_codes then 

14:                continue 
15:          else 
16:               for s = 0 to TEST_codes do len(s) > 0 and 

len(Second_filtered_codes[i]) > and ((Second_filtered_codes[i] 
in s)  

or (s in Second_filtered_codes[i])) 
17:                     USE_TOKEN = False 
18:               if USE_TOKEN == True then 

19:                     
Third_filtered_codes.append(Second_filtered_codes[i]) 

→ Third Filtering 

20:     Return Third_filtered_codes 

D. Cross-Validation Ensemble 
The training process of the language models is divided into 

training, validating, and testing datasets, respectively. For 

evaluation of our model, any data imbalance-related issues 

can not be allowed; if there are, an accurate measure is 

impossible. In Fig. 2, the 5-fold cross-validation can train 

each model in the training step, alternating each set 5 times. 

We finally divided the overall training dataset by 8:2, 

finetuned the model with each train & valid features, and 

evaluated it on the test dataset. 

 

 
Fig. 2  A method of 5-fold cross-validation. The models were ensembled by 

voting from each #�)�*5� �,
,6,7,89 and resulting in these models' training and 

testing 

 

Consequently, a more accurate performance evaluation can 

be performed. We utilized the method of evaluating the final 

performance by recording the checkpoint that indicates the 

best performance for each fold and creating an ensemble of 

the determinations made by the 5 models generated in this 

method in the testing process.  

III. RESULTS AND DISCUSSION 

This section describes the quantitative experimental 

method and experimental results that prove the effectiveness 

of our proposed method. 

A. Data 

The experiment was conducted by randomly extracting 

only 50% of the CodeNet data, owing to resource problems, 

presented at a code similarity competition, which was a NLP 

AI contest held in Korea in May 2022. The problems were 

numbered, and there were two solution codes (1 and 2) for 

solving each problem.  

TABLE I 

VOLUME AND COUNT OF DATA FOR COMPETITION AND CODENET. ONLY 

50% OF CODENET WAS USED OWING TO A RESOURCE ISSUE. THE POSITIVE 

AND NEGATIVE PAIRS CREATED IN THIS PROCESS ARE COMBINED AND USED 

AS THE TOTAL TRAINING DATA. 

 

Table 1 shows the count and volume of the competition and 

CodeNet data used in the experiment. Positive and negative 

pairs were created to increase the volume of the data. In 

addition, the validation loss was calculated every 1000 steps 

by classifying the data as training and validation data. When 

two codes are input, the accuracy is used to measure the 
performance of the binary classification task, which 

determines whether the two codes solve the same problem. 

E. Experiment Setup 

The experiment environment is as follows. The 

graphcodebert and codebert-mlm models were used for the 

proposed method. Both models were trained on a large dataset 

used for researching the probing capability of code-based 

PLMs. These PLMs can learn the general-purpose 
representation as well as code search and documentation 

generation tasks. Moreover, these PLMs are language models, 

and studies have been recently conducted on these models for 

downstream tasks related to code as in Table 2.  

TABLE II 

EXPERIMENTAL RESULTS OF THE LANGUAGE MODEL TRAINED ON THE 

KOREAN NUMERICAL REASONING DATA 

 

Meanwhile, Table 3 lists the hyperparameters for 

finetuning the two models using the proposed method. These 

models were trained using an A100 GPU and by setting the 

learning rate to 2e-5, epsilon to 1e-5, the optimizer to 

AdamW, max epochs to 2, batch size to 32, and max sequence 

length to 512.  

DATA Competition CodeNet 

Count 45,000 120,000 
Volume 185.5MB 493.25MB 
Positive 
& 
Negative 
Pairs 

Total 
Count 

Train: 
5,445,594 
Valid: 63,242 

Train: 10,316,052 
Valid: 117,168 

Total 

Volume 

Train: 3.52GB 

Valid: 55.1MB 

Train: 7.34GB 

Valid: 117.4MB 

Models 
Competition Only Competition + CodeNet 

BM25 BM25L BM25 BM25L 

Accuracy 

graphcodebert 95.7206 96.3735 96.4251 97.3456 
codebert-mlm 94.9471 95.8456 95.6421 96.8657 
Cross validated 
ensemble 

96.0823 97.0988 97.6552 98.8785 
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TABLE III 

HYPERPARAMETER SETTINGS FOR THE FINETUNING PROCESS WITH 

GRAPHCODEBERT AND CODEBERT-MLM. 

Hyperparameters Models 

Learning rate 2e-5 
Epsilon 1e-5 
Optimizer AdamW 
Max epochs 2 
Batch size 32 
Max sequence length 512 

F. Results 

Table 3 shows the quantitative results of the code similarity 

evaluation model. The first column shows the single models 

used in the experiment, graphcodebert and codebert-mlm, and 

cross-validation ensemble of the two models. In addition, the 

competition-only and competition + CodeNet data were used 

as the training data. The similarity was measured by applying 
the BM25 and BM25L similarity algorithms of the Okapi 

system to each dataset to generate the positive and negative 

pairs. 

The results show a consistent performance improvement 

when the BM25L algorithm was applied, unlike with the 

BM25 algorithm. In addition, the graphcodebert model (the 

first row of Models) outperformed the codebert-mlm model 

(the second row of Models). Moreover, the cross-validation 

ensemble of the two models achieved a better performance 

than the two single models. In particular, the cross-validation 

ensemble model finetuned with the competition + CodeNet 

dataset achieved the highest score with a performance of 
98.8785. 

IV. CONCLUSION 

In this study, we proposed an effective code similarity 

representation model. Our approach of data filtering 

strategies: deduplication, delete intersection, and exhaustive 

search, can eliminate data redundancy and contributes to 

efficient model training. Subsequently, the positive and 
negative pairs were formed by applying the BM25 and 

BM25L algorithms to the filtered dataset. Then, the model 

was finetuned with the 5-fold cross-validation method. 

Finally, the best performance was achieved by performing a 

final inference on the test dataset by the five models, each of 

which was trained with the cross-validated ensemble method. 

The performance improvement was demonstrated 

quantitatively by comparing our approach with conventional 

methods. In addition, the ensemble was proven effective on 

both single and augmented data. Our approach to improving 

the productivity of this software is crucial as the impact of 

labor-supply shortages in IT can negatively affect both 
productivity and innovation, and we believe our methods will 

be leveraged in various NLP tasks. 
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