
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Enhancing Code Similarity with Augmented Data Filtering and

Ensemble Strategies

Gyeongmin Kim a, Minseok Kim b, Jaechoon Jo c,*

a Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea
b Minds lab Inc., Seongnam 13493, Republic of Korea

c Division of Computer Engineering, Hanshin University, Osan 18101, Republic of Korea

Corresponding author: *jaechoon@hs.ac.kr

Abstract— Although COVID-19 has severely affected the global economy, information technology (IT) employees managed to perform

most of their work from home. Telecommuting and remote work have promoted a demand for IT services in various market sectors,

including retail, entertainment, education, and healthcare. Consequently, computer and information experts are also in demand.

However, producing IT, experts is difficult during a pandemic owing to limitations, such as the reduced enrollment of international

students. Therefore, researching increasing software productivity is essential; this study proposes a code similarity determination model

that utilizes augmented data filtering and ensemble strategies. This algorithm is the first automated development system for increasing

software productivity that addresses the current situation—a worldwide shortage of software dramatically improves performance in

various downstream natural language processing tasks (NLP). Unlike general-purpose pre-trained language models (PLMs),

CodeBERT and GraphCodeBERT are PLMs that have learned both natural and programming languages. Hence, they are suitable as

code similarity determination models. The data filtering process consists of three steps: (1) deduplication of data, (2) deletion of

intersection, and (3) an exhaustive search. The best mating (BM) 25 and length normalization of BM25 (BM25L) algorithms were used

to construct positive and negative pairs. The performance of the model was evaluated using the 5-fold cross-validation ensemble

technique. Experiments demonstrate the effectiveness of the proposed method quantitatively. Moreover, we expect this method to be

optimal for increasing software productivity in various NLP tasks.

Keywords— Code similarity; language model; software productivity; CodeBERT; cross-validated ensemble.

Manuscript received 19 Oct. 2021; revised 12 Jan. 2022; accepted 19 Apr. 2022. Date of publication 30 Sep. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Pretrained language models (PLMs) such as Bidirectional

Encoder Representations from Transformers (BERT) [1],

Generative Pre-Training (GPT) [2], and eXtra Long

NETwork (XLNET) [3], [4] have contributed to tremendous

performance improvements in downstream tasks, such as

machine reading comprehension, entity recognition, and

relation extraction, of natural language processing (NLP) in

recent years. These PLMs are based on the transformer

architecture [5], and they are pretrained on a large
unsupervised text corpus and then finetuned with training data

in downstream tasks such as question answering [6], [7],

named entity recognition [8] and relation extraction [9]. This

pre-training and finetuning model approach in NLP has

expedited pre-training development.

CodeBERT [10] and GraphCodeBERT [11] are language

models trained in a programming language (PL) and natural

language (NL). These are PLMs that have been optimized
such as for code search and document generation. Both

models were pretrained on the CodeSearchNet dataset

containing functions in six PLs as well as NLs’ documents.

In the pre-training process, the former model was trained

on objective functions, including standard masked language

modeling (MLM), and replaced token detection (RTD) [12].

The latter model was trained on code representations using the

semantic structure of the code. These code-aware specific

PLMs, which have learned code representations, differ from

general PLMs that have not learned code as they can classify

the similarity when inputting a PL. Moreover, these PLMs are
considered more general.

Recently, a serious worldwide shortage of software

developers and experts who can supply quality software has

become evident [13], [14]. As the supply of software

676

JOIV : Int. J. Inform. Visualization, 6(3) - September 2022 676-680

developers is limited, having a method prepared in advance

for analyzing, developing, and maintaining software based on

an automated method is essential for increasing software

productivity. In addition, many studies are being conducted in

this field worldwide. As a first step, an algorithm that

determines whether two codes can produce the same results is

crucial for enhancing software productivity.

Our research heavily involves the use of deep bimodal

architectures trained on both PL and NL. Specifically, we

used CodeBERT, GraphCodeBERT, CodeBERT-MLM

(developed by Microsoft Research), and CodeBERTaPy.
CodeBERT and CodeBERT-MLM were among the first

research to create models that capture the semantic connection

between NL and PL, such as Python, Java, JavaScript, etc. In

the pre-training step, the input data consists of two sequences

concatenated with a special token i.e. ����� ��, �
 , … , �� ���� ��, �
, … , �� ���� where

segment ��� , �
, … , ��� denotes NL text and the segment ���, �
, … , ��� denotes a certain PL. This input is then passed

through a standard BERT architecture, and the outputs of the

model are the contextual vector representation of each token
for both the language and the code component and the [CLS]

token embedding containing the pooled sequence

information. The pre-training objective functions include

MLM and RTD, as we mentioned above. Both bimodal and

unimodal data were used to train CodeBERT, and bimodal

data was obtained from GitHub repositories where a code is

paired with its description. CodeBERT [10] was then

finetuned for downstream tasks such as code search and code-

to-text generation, and it achieved state-of-the-art

performances in both tasks. GraphCodeBERT [11] followed

CodeBERT, and it is a graph-based pre-trained model based

on Transformer [5] for PL. It is one of the first works that
leverages code structure to learn code representation to

improve code understanding dramatically. The pre-training

tasks for GraphCodeBERT are unique in that they include not

only masked language modeling but also data flow edge

prediction and the variable-alignment across source code and

data flow to align representation between source code and

data flow.

Furthermore, the CodeSearchNet challenge [15] launched

in 2020 actively encourages research in retrieving relevant

code given an NL query. The organizers provide a corpus

consisting of 99 NL queries with approximately 4000 expert
relevance annotations of likely results. It also consists of

automatically generated NL queries for 2 million code

functions. A leaderboard was run, encouraging competition

and advancement in this area of research. Another notable

project that made use of deep learning for code understanding

is the AlphaCode project [16] initiated by Deep Mind.

AlphaCode aims to train deep learning models that understand

code for code generation, specifically generating code

solutions in various PLs to competitive coding problems from

CodeForces. They approached the problem as a sequence-to-

sequence task, where given a problem statement in NL, a
solution code string was generated. Thus, the researchers of

AlphaCode made use of an encoder-decoder Transformer

architecture [17] to solve the problem. This project also made

its training dataset public, which came in very handy for us to

use as an additional source of training data when fine-tuning

our CodeBERT models for detecting code similarity.

Despite the advancements in code and natural language

understanding, there are not many existing works of literature

on utilizing these architectures to classify code performing

similar tasks directly. Instead, widely used approaches are

text-based detection [18], token-based detection [19], which

extracts a sequence of tokens using compiler-style source

code transformation that is subsequently used for similarity

matching, and tree-based detection [20], where the code is

transformed to abstract syntax trees and are later used in tree

sub matching algorithms for similarity identification and

metrics based detection [21] that extracts a number of metrics
from the source code fragments then comparing these metrics

for detecting similarity. Another research is about using flow

charts [22] to detect code similarity, but it is applied for cross-

language source code detection (i.e., detecting similarity even

when source codes are written in different PLs). The

aforementioned techniques do not rely on deep learning, but

recently relatively simple deep learning-based code

embedding techniques such as Code2Vec [23] were explored

to embed codes for similar or clone code detection.

For most code search systems being used in practice, it

appears that simpler methods that do not involve deep neural
networks, such as a cross encoder or a bi-encoder structure for

classifying similarity, seem to be preferred. Our work shows

that fine-tuning deep pre-trained language models that

understand code performs efficiently on the task of code

similarity detection and thus provides an incentive for using

deep pre-trained models for future code similarity detection

systems.

In this study, we propose a language model system that can

determine code similarity using an automated method. The

three-step strategic data filtering process for effectively

training a language model can eliminate duplication between
training and testing. In addition, positive and negative pairs

were generated using the best matching (BM25) [24] and

length normalization of BM25 (BM25L) [25] algorithms of

the Okapi system with proven performance. Moreover, the

cross-validation ensemble method [26] enabled an accurate

and effective performance in the model training process in

which data imbalance existed.

The contributions are as follows:

 Three data filtering strategies for removing duplication

in the training dataset are introduced. In addition,

positive and negative pairs are obtained using the

BM25 and BM25L algorithms.
 CodeBERT and graphcodebert, pretrained on code

representations, are finetuned. Then, the cross-

validation ensemble, verified when inferencing, is

applied to extract a more effective performance.

 The effectiveness of the proposed method is verified

using quantitative experiments for single and ensemble

models.

II. MATERIALS AND METHOD

In this section, we describe the following three crucial

procedures (data preprocessing process, three filtering

strategies, forming positive, and negative pairs), and finally, a

cross-validated ensemble method for achieving performance

from the ensembled results of a single model. Fig. 1 shows the

overall schematic of the process.

677

Fig. 1 Scheme of the model’s training process by applying the proposed technique from the text input sequence

A. Data Preprocessing

Before the code data is fed as an input sequence of the

model, cleaning the raw text must be performed because of

the characteristic of the code. The code may be written in an

unorganized manner by the coder or contain text information

that is irrelevant to compilation. Especially, the existing typo

information in the code is unnecessary, and it can act as a fatal
factor in the model training procedure. First, unnecessary new

lines and spaces are removed. Comments (sequences marked

with ‘#’) written to help understand the code are also

somewhat unnecessary for our training process. Hence, they

are removed along with white spaces.

B. Data Filtering Strategies

Duplication of data may occur when using different

datasets as training and test data. Therefore, a model trained

with these duplicated features cannot perform an accurate

evaluation. Before enhancing the model with additional data,

we observed data duplication between the additional training

data and the test data. Hence, filtering was performed with

three strategies. Algorithm 1 describes the three-step data

filtering strategies in Fig. 1 more effectively.

1) Deduplication of Data: First, the data corresponding to

A and B, and the TEST codes are loaded. The first filtering

strategy filters overlapped sequence data using a hash table
(HT). This method records all values of A in the HT and then

checks whether these values exist in B; this is the most

common and widely used method. For the first filtering of

Algorithm 1 (1~6 lines), (1) the sequence input to the

DEDUPLICATION function and initialized HT creates a new

HT from the A, and (2) the new HT is compared with B to

create First_filtered_codes (6 lines). Most duplicate data are

filtered out in this process.

2) Deletion of Intersection: Second, the purpose of the

Second Filtering is to filter out data not completely filtered

out by the HT owing to reasons such as trailing space. This
includes spaces such as white spaces ‘ ’ in the right or left

edge of sentences, tabs ‘\t’, In the second filtering of

Algorithm 1 (7~10 lines), (1) the SIMPLIFY function

concatenates all newlines existing in the character strings of

the code. (2) All spaces and newlines before and after the

character strings are removed. (3) Filtering is performed once

more by taking the intersection of these filtered sequences of

the test code and using first_filtered_codes to generate

second_filtered_codes.

3) Exhaustive Search: Most of the duplicated data are

removed by the second filtering process. However, a method

that completely eliminates duplication is required. Therefore,
an exhaustive search is performed, and s and TEST_codes are

mutually compared in the third filtering of Algorithm 1 to

remove the few remaining duplicate data traces (11~20 lines).

Now, the third_filtered_codes, which are used as the training

data, are finally generated.

C. Forming positive and negative pairs
Then, the dataset that has been trimmed with the previous

three preprocessing strategies should be composed of positive

and negative pairs for the training process. One type of

training data is positive pairs which can determine whether
the two codes are similar, and the other is negative pairs which

can determine whether the two codes are not similar. For

negative samples, ranks are assigned after sorting the data in

descending order based on the confidence score. BM25

algorithm of the Okapi system, which is based on probabilistic

retrieval research, is a ranking function utilized by search

engines to rank matching sentences according to their

relevance to a given query. For length normalization of

BM25, BM25L, a newer variant to boost scores of very long

documents and more effective than BM25, was proposed [25].

The Okapi BM25 scores a document � with respect to query

sentence � containing keywords �� , … , �� as follows:

�������, �� = � �������
�

� �
∙ "��� , �� ∙ �#� + 1�

"��� , �� + #� ∙ �& ∙ |�|()* + 1 − &�

where f(��, �� is the term frequency of �� in �, |�| is the

length of the words, and ()* is average document length. #� (,) & are hyperparameters.

������� = ln /0 − ,���� + 0.5
,���� + 0.5 4 + 1

The inverse document frequency (IDF) means how

common or rare a word is in the total document set. �������

is consisted of IDF weight of the query term �� and ,���� is

the number of documents containing ��, which is calculated

as above. Using these algorithms, the volume of the original

dataset was dramatically expanded, and we experimented
with demonstrating the improved efficiency of the code

similarity evaluation model.

Algorithm 1 Efficient Data Filtering Strategies

A = DATA1, B = DATA2
Load TEST_codes

procedure DEDUPLICATION(sequence, HT)

→ Quick check if i is in HT

1: Read All A, B values
2: for i = 0 to len(A[i]) do

3: HT.add(A[i])

→ Build HT

4: for i = 0 to len(A[i]) do

5: if B[i] not in HT then

6: First_filtered_codes.append(B[i])

→ First Filtering

procedure SIMPLIFY(code)
7: return ‘’.join(code.split(‘\n’)).rstrip(‘ ’).strip()

678

procedure DELETE INTERSECTION(First_filtered_codes)

8: for i = 0 to len(First_filtered_codes[i]) do

9: if SIMPLIFY(First_filtered_codes[i]) not in
INTERSECTION(TEST_codes) then

10:
Second_filtered_codes.append(First_filtered_codes[i])

→ Second Filtering

procedure EXHAUSTIVE SEARCH(Second_filtered_codes)

11: for i = 0 to len (Second_filtered_codes[i]) do

12: USE_TOKEN = True

13: if Second_filtered_codes[i] in TEST_codes then

14: continue
15: else
16: for s = 0 to TEST_codes do len(s) > 0 and

len(Second_filtered_codes[i]) > and ((Second_filtered_codes[i]
in s)

or (s in Second_filtered_codes[i]))
17: USE_TOKEN = False
18: if USE_TOKEN == True then

19:
Third_filtered_codes.append(Second_filtered_codes[i])

→ Third Filtering

20: Return Third_filtered_codes

D. Cross-Validation Ensemble
The training process of the language models is divided into

training, validating, and testing datasets, respectively. For

evaluation of our model, any data imbalance-related issues

can not be allowed; if there are, an accurate measure is

impossible. In Fig. 2, the 5-fold cross-validation can train

each model in the training step, alternating each set 5 times.

We finally divided the overall training dataset by 8:2,

finetuned the model with each train & valid features, and

evaluated it on the test dataset.

Fig. 2 A method of 5-fold cross-validation. The models were ensembled by

voting from each #�)�*5� �,
,6,7,89 and resulting in these models' training and

testing

Consequently, a more accurate performance evaluation can

be performed. We utilized the method of evaluating the final

performance by recording the checkpoint that indicates the

best performance for each fold and creating an ensemble of

the determinations made by the 5 models generated in this

method in the testing process.

III. RESULTS AND DISCUSSION

This section describes the quantitative experimental

method and experimental results that prove the effectiveness

of our proposed method.

A. Data

The experiment was conducted by randomly extracting

only 50% of the CodeNet data, owing to resource problems,

presented at a code similarity competition, which was a NLP

AI contest held in Korea in May 2022. The problems were

numbered, and there were two solution codes (1 and 2) for

solving each problem.

TABLE I

VOLUME AND COUNT OF DATA FOR COMPETITION AND CODENET. ONLY

50% OF CODENET WAS USED OWING TO A RESOURCE ISSUE. THE POSITIVE

AND NEGATIVE PAIRS CREATED IN THIS PROCESS ARE COMBINED AND USED

AS THE TOTAL TRAINING DATA.

Table 1 shows the count and volume of the competition and

CodeNet data used in the experiment. Positive and negative

pairs were created to increase the volume of the data. In

addition, the validation loss was calculated every 1000 steps

by classifying the data as training and validation data. When

two codes are input, the accuracy is used to measure the
performance of the binary classification task, which

determines whether the two codes solve the same problem.

E. Experiment Setup

The experiment environment is as follows. The

graphcodebert and codebert-mlm models were used for the

proposed method. Both models were trained on a large dataset

used for researching the probing capability of code-based

PLMs. These PLMs can learn the general-purpose
representation as well as code search and documentation

generation tasks. Moreover, these PLMs are language models,

and studies have been recently conducted on these models for

downstream tasks related to code as in Table 2.

TABLE II

EXPERIMENTAL RESULTS OF THE LANGUAGE MODEL TRAINED ON THE

KOREAN NUMERICAL REASONING DATA

Meanwhile, Table 3 lists the hyperparameters for

finetuning the two models using the proposed method. These

models were trained using an A100 GPU and by setting the

learning rate to 2e-5, epsilon to 1e-5, the optimizer to

AdamW, max epochs to 2, batch size to 32, and max sequence

length to 512.

DATA Competition CodeNet

Count 45,000 120,000
Volume 185.5MB 493.25MB
Positive
&
Negative
Pairs

Total
Count

Train:
5,445,594
Valid: 63,242

Train: 10,316,052
Valid: 117,168

Total

Volume

Train: 3.52GB

Valid: 55.1MB

Train: 7.34GB

Valid: 117.4MB

Models
Competition Only Competition + CodeNet

BM25 BM25L BM25 BM25L

Accuracy

graphcodebert 95.7206 96.3735 96.4251 97.3456
codebert-mlm 94.9471 95.8456 95.6421 96.8657
Cross validated
ensemble

96.0823 97.0988 97.6552 98.8785

679

TABLE III

HYPERPARAMETER SETTINGS FOR THE FINETUNING PROCESS WITH

GRAPHCODEBERT AND CODEBERT-MLM.

Hyperparameters Models

Learning rate 2e-5
Epsilon 1e-5
Optimizer AdamW
Max epochs 2
Batch size 32
Max sequence length 512

F. Results

Table 3 shows the quantitative results of the code similarity

evaluation model. The first column shows the single models

used in the experiment, graphcodebert and codebert-mlm, and

cross-validation ensemble of the two models. In addition, the

competition-only and competition + CodeNet data were used

as the training data. The similarity was measured by applying
the BM25 and BM25L similarity algorithms of the Okapi

system to each dataset to generate the positive and negative

pairs.

The results show a consistent performance improvement

when the BM25L algorithm was applied, unlike with the

BM25 algorithm. In addition, the graphcodebert model (the

first row of Models) outperformed the codebert-mlm model

(the second row of Models). Moreover, the cross-validation

ensemble of the two models achieved a better performance

than the two single models. In particular, the cross-validation

ensemble model finetuned with the competition + CodeNet

dataset achieved the highest score with a performance of
98.8785.

IV. CONCLUSION

In this study, we proposed an effective code similarity

representation model. Our approach of data filtering

strategies: deduplication, delete intersection, and exhaustive

search, can eliminate data redundancy and contributes to

efficient model training. Subsequently, the positive and
negative pairs were formed by applying the BM25 and

BM25L algorithms to the filtered dataset. Then, the model

was finetuned with the 5-fold cross-validation method.

Finally, the best performance was achieved by performing a

final inference on the test dataset by the five models, each of

which was trained with the cross-validated ensemble method.

The performance improvement was demonstrated

quantitatively by comparing our approach with conventional

methods. In addition, the ensemble was proven effective on

both single and augmented data. Our approach to improving

the productivity of this software is crucial as the impact of

labor-supply shortages in IT can negatively affect both
productivity and innovation, and we believe our methods will

be leveraged in various NLP tasks.

ACKNOWLEDGMENTS

Hanshin University Research Grant supported this work.

REFERENCES

[1] D. Jacob, et al. "Bert: Pre-training of deep bidirectional transformers

for language understanding." arXiv preprint arXiv:1810.04805 (2018).

[2] A. Radford, et al. "Language models are unsupervised multitask

learners." OpenAI blog 1.8 (2019): 9.

[3] Y. Zhilin, et al. "Xlnet: Generalized autoregressive pre-training for

language understanding." Advances in neural information processing

systems 32 (2019).

[4] D. Zihang, et al. "Transformer-xl: Attentive language models beyond

a fixed-length context." arXiv preprint arXiv:1901.02860 (2019).

[5] A. Vaswani, et al. "Attention is all you need." Advances in neural

information processing systems 30 (2017).

[6] G. Kim, et al. "AI Student: A Machine Reading Comprehension

System for the Korean College Scholastic Ability

Test." Mathematics 10.9 (2022): 1486.

[7] S. Lee, G. Kim, and H. Lim, “Verification of educational goal of

reading area in Korean SAT through natural language processing

techniques,” Journal of the Korea Convergence Society, vol. 13, no. 1,

pp. 81–88, Jan. 2022.

[8] G. Kim, et al. "Automatic extraction of named entities of cyber threats

using a deep Bi-LSTM-CRF network." International journal of

machine learning and cybernetics 11.10 (2020): 2341-2355.

[9] K. Kim, et al. "GREG: A global level relation extraction with

knowledge graph embedding." Applied Sciences 10.3 (2020): 1181.

[10] Z. Feng, et al. 2020. CodeBERT: A Pre-Trained Model for

Programming and Natural Languages. In Findings of the Association

for Computational Linguistics: EMNLP 2020, pages 1536–1547,

Online. Association for Computational Linguistics.

[11] G. Daya, et al. "Graphcodebert: Pre-training code representations with

data flow." International Conference on Learning Representations:

ICLR 2021.

[12] C. Kevin, et al. "Electra: Pre-training text encoders as discriminators

rather than generators." arXiv preprint arXiv:2003.10555 (2020).

[13] T. Breaux and J. Moritz. 2021. The 2021 software developer shortage

is coming. Commun. ACM 64, 7 (July 2021), 39–41.

https://doi.org/10.1145/3440753.

[14] P. Tambe, Xuan Ye, Peter Cappelli (2020) Paying to Program?

Engineering Brand and High-Tech Wages. Management Science

66(7):3010-3028. https://doi.org/10.1287/mnsc.2019.3343.

[15] H. Hamel, et al. "Codesearchnet challenge: Evaluating the state of

semantic code search." arXiv preprint arXiv:1909.09436 (2019).

[16] L. Yujia, et al. "Competition-level code generation with

alphacode." arXiv preprint arXiv:2203.07814 (2022).

[17] Z. Feng, et al. "Flowchart-based cross-language source code similarity

detection." Scientific Programming (2020).

[18] S. Ducasse, M. Rieger and S. Demeyer, "A language independent

approach for detecting duplicated code," Proceedings IEEE

International Conference on Software Maintenance - 1999 (ICSM'99).

'Software Maintenance for Business Change' (Cat. No.99CB36360),

1999, pp. 109-118, doi: 10.1109/ICSM.1999.792593.

[19] B. S. Baker, "On finding duplication and near-duplication in large

software systems," Proceedings of 2nd Working Conference on

Reverse Engineering, 1995, pp. 86-95, doi:

10.1109/WCRE.1995.514697.

[20] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna and L. Bier, "Clone

detection using abstract syntax trees," Proceedings. International

Conference on Software Maintenance (Cat. No. 98CB36272), 1998,

pp. 368-377, doi: 10.1109/ICSM.1998.738528.

[21] M. Leblanc and Merlo, "Experiment on the automatic detection of

function clones in a software system using metrics," 1996 Proceedings

of International Conference on Software Maintenance, 1996, pp. 244-

253, doi: 10.1109/ICSM.1996.565012.

[22] P. Anupriya. Code Clone Detection Using Code2Vec. University of

California, Irvine, 2020.

[23] A. Uri, et al. "code2vec: Learning distributed representations of

code." Proceedings of the ACM on Programming Languages 3.POPL

(2019): 1-29.

[24] R. Stephen, et al. "Okapi at TREC-3." Nist Special Publication Sp 109

(1995): 109.

[25] Y. Lv and C. Zhai. 2011. When documents are very long, BM25 fails!

In Proceedings of the 34th international ACM SIGIR conference on

research and development in Information Retrieval (SIGIR '11).

Association for Computing Machinery, New York, NY, USA, 1103–

1104. https://doi.org/10.1145/2009916.2010070.

[26] K. Yang, et al. "Cross-Validated Ensemble Methods in Natural

Language Inference." Annual Conference on Human and Language

Technology. Human and Language Technology, 2019.

680

