
1

 Advanced Homomorphic Encryption for Cloud Data Security

D.Chandravathi #, Dr.P.V.Lakshmi *

GVP College for Degree and PG courses Rushikonda, Viakhapatnam-45

E-mail: chandravathi.d@gmail.com

* GITAM University, Rushikonda, Viakhapatnam-45

Abstract— This paper aims to provide security of data in the Cloud using Multiplicative Homomorphic Approach. Encryption process

is done with RSA algorithm. In this RSA algorithm, Shor’s algorithm is used for generating Public key Component, which enhances

the security. Shor’s algorithm plays as important role in generating public key. Plain Text Message is encrypted with Public Key to

generate Cipher Text and for decryption Chinese Remainder Theorem (CRT) is used to speed up the computations. By doing so, it

shows how the CRT representation of numbers in Zn can be used to perform modular exponentiation about much more efficiently

using three extra values pre-computed from the prime factors of n. Hence, security is enhanced in the cloud provider.

Keywords— Multiplicative homomorphic, encryption, RSA algorithm, Shor’s algorithm, CRT, public key, modular exponentiation

I. INTRODUCTION

Security of data is the most important aspect that

has to be considered in the cloud, which gives an importance

and value of exchanged data over the Internet or other media

types. This paper tries to increase a fair performance of the

most commonly used RSA(Rivest-Shamir-Adleman)

algorithm in the data encryption field[9]. Cryptography is

usually referred to as “the study of secret”, while now a day

is most attached to the definition of encryption. Encryption

is the process of converting plain text to a hidden form or

scrambled manner to secure it against attacks[1]. This

process has another part where cryptic text needs to be

decrypted on the other end to be understood. The process of

encryption is carried using RSA algorithm and the cipher is

generated which is stored in the cloud. Further,in the cloud

homomorphic multiplicative operation is performed for

authentication . If authentication is successful then we using

Chinese reminder theorem to decrypt the cipher text to

generate plain text[1][2].

RSA Cryptosystem

The RSA system is an asymmetric public key

cryptosystem .This means that there are many number of

pairs of algorithms (E, D) both defined on the same set of

values. E is the public encryption algorithm and D is the

private decryption algorithm [4][9]. These satisfy:

• Encryption process followed by decryption process

: If c=E(m) is the chipper text generated from some

plaintext m, then m=D(c) i.e. m=D(E(m))

• Encrypt efficiently: For any message m, there is an

efficient algorithm to calculate E(m).

• Decrypt efficiently: or any message or cipher text x,

there is an efficient algorithm to calculate D(x).

• Public and private keys intact: From knowledge of

E, there is no efficient way to discover D.

• Signing phase: The set of messages m are the same

as the set of cipher texts c=E(m), for all m, so that

the decryption algorithm can be applied to a

message, resulting in signature.

• Verification: If s=D (m) is the signature

corresponding to some plaintext m, then m=E(s).

Shor’s Algorithm

This algorithm is used in the generation of the public

key used in RSA encryption. It helps in the generation of

two GCD values and from which we can decide on one as

the public key. We first compute gcd of the number by using

Euclidean algorithm.Then we check whether the gcd of the

number is not equal to 1.If it so then it is the gcd otherwise

we use to find period subroutine a r /2 ≢ −1 mod B,which

generates two gcd values ie, gcd (ar/2 + 1, N) and gcd (ar/2 -

1, N) .The below is the Shor’s algorithm :

VOL 1 (2017) NO 1

e-ISSN : 2549-9904

ISSN : 2549-9610

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

2

Pick a random number a < N.

1. Compute gcd(a, N). This can be done using

the Euclidean algorithm.

2. If gcd(a, N) ≠ 1, then there is a nontrivial factor

of N, so we are done.

3. Otherwise, use the period-finding subroutine

(below) to find r.

4. If r is odd, go back to step 1.

5. If a r /2 ≢ −1 (mod N), go to step 1.

6. gcd (ar/2 + 1, N) and gcd (ar/2 - 1, N) are both

nontrivial factors of N. We are done.

Homomorphic Encryption

Homomorphic Encryption systems are used to perform

operations on encrypted data.This is done without knowing

the private key (without decryption).The client is the only

holder of the secret key[4][5]. When we decrypt the result of

any operation, it is the same as if we had carried out the

calculation on the raw data. For example let us consider two

ciphers as 3 and 2.Then we need to calculate the

multiplicative operation for homomorphic encryption as

3 * 2 = ?

Encrypt 3 to get =10

Encrypt 2 to get =20

10 * 20 = 200

Decrypt 200 with private key to get original value 6.

Chinese Reminder Theorem:

The major importance of CRT is that it speeds up the

calculations for RSA algorithm. CRT representation of

numbers in Zn is used to perform modular exponentiation

which is about four times more efficient. By using three

extra values pre-computed from the prime factors of n, and

Garner's formula for the calculations make it more

efficient.To decrypt ciphertext ‘ c ‘ or to generate a signature

using RSA with private key (n, d), calculation of the

modular exponentiation m = cd mod n is needed. The private

exponent ‘d’ is not as convenient as the public

exponent .Hence we can choose a value with as few '1' bits

as possible. For a modulus n of k bits, the private

exponent ‘d’ will be of similar length, with approximately

half being '1'. CRT is used to compute m = cd mod n more

efficiently which is given below.

CRT is used for the process of decryption of the data stored

in the cloud.

• Compute the following values

given P, Q with P > Q

 dP = (1/e) mod (p-1)

 dQ = (1/e) mod (q-1)

 QInv = (1/Q) mod p

the (1/e) notation means the modular inverse. The

expression x = (1/e) mod N is also written as x = e-

1 mod N, and x is any integer that satisfies x.e ≡ 1

(mod N). In our case, where N = n = pq, we use the

unique value x in Zn, ={0, 1, 2, ..., n-1}.

• To compute the Plain message m given c do

 m1 =cdP mod P

 m2 = cdQ mod Q

 h = QInv.(m1 - m2) mod P

 m = m2 + h*Q

Store the private key as the quintuple (P, Q, dP, dQ,

QInv).

Chinese Remainder Theorem (CRT) and Euler's

Theorem (also called the Euler-Fermat Theorem) are used

from number theory.

II. MATERIALS AND METHOD

Proposed Method
There are many traditional algorithms for encryption

and decryption such as RSA,DES,IDEA etc. But these are

not sufficient to provide security in cloud, since much of

calculations are done for using private key. The proposed

scheme uses Shor’s algorithm for generating two GCD

values which enhances more security and the computed

cipher is stored in cloud. It provides confidentiality to the

data because at no stage data is exposed in plain text and

also uses Chinese remainder theorem(CRT) to decrypt the

cipher which would be much more faster than standard RSA.

Fig. 1 Work Flow

In standard RSA, for encryption we need a public key.

For finding it, we calculate ‘e’ value which is difficult for

the user to choose such value. To overcome this problem

shor’s algorithm is used to find two GCD values. It reduces

the effort of user for finding public key.

Algorithm

• Step 1. Choose random large prime integers P and

Q which are roughly the same size and which are

not too close together.

• Step 2. Calculate the product N= P * Q.

• Step 3. Calculate Ø(N)=(P-1)*(Q-1)

• Step 4. Calculate ‘e’ such that 1 < e < phi(n)

(For Calculating ‘e’ using Shor’s Algorithm,

randomly choose

‘x’ between 1 and Ø(N), then find r = x mod

Ø(N) and

y = x^(r/2) mod Ø(N) .Then find GCD(y+1,

Ø(N) =1 and

GCD(y-1, Ø(N) =1)

• Step 5. Calculate ‘d’ such that e * d mod Ø(N) = 1

• Step 6. Encryption: C = M^e % Ø(N).

Homomorphic Encryption to provide Security in Cloud

• Step 7. Compute (C1 * C2*….. * Cn) and Store the

Mulitple value in cloud.

3

• Step 8. Decrypt the Cipher Multiple Data with

private key to get some value which is equal to the

original multiples of the Plain Text.

 (if authentication is Failed then Stop the

Process otherwise go to Step 9 for decryption)

• Step 9:Precompute the following values

given P, Q with P > Q

 dP = (1/e) mod (P-1)

 dQ = (1/e) mod (Q-1)

 qInv = (1/Q) mod P

where the (1/e) notation means the modular inverse.

The expression

 x = (1/e) mod N is also written as x = e-1 mod

N, and x is any integer that satisfies x.e ≡ 1 (mod N).

In our case, where N = n = P*Q, we use the unique

value x in Zn, the set of numbers {0, 1, 2, ..., n-1}.

• Step 10. To compute the Plain

message m given c do

 m1 =cdP mod P

 m2 = cdQ mod Q

 h = QInv.(m1 - m2) mod P

 m = m2 + h*Q

 Store the private key as quintuple (P,Q, dP, dQ,

QInv).

Example:

RSA encryption Process using Shor’s algorithm for gcd

generation:

• Let P = 137, Q= 131, N = 137*131 = 17947,

• Calculate phi(n)=136 * 130 =17680

• 1 < e < 17680 (using shor’s Algorithm)

 choose random value x = 30

 r = 30 mod 17680 = 30

 and y = 30^15 mod 17680= 480

• GCD(481,17680) ≠ 1 GCD(479,17680) = 1

• Hence e = 479

• e * d % Ø(N) =1

• Therefore, d= 2879

• M1 = 513 (Plain Text) M2 = 171

• c1= 513479 mod 17947 = 5337 and c2 = 171479 mod

17947 = 13822

• c1 * c2 = 5337 * 13822 = 73768014 (Store this

value in cloud for authentication)

• Decrypt c1 * c2 with the private key ‘d’

• 737680142879 mod 17947 = 15935(which is equal to

the multiples of plain text message)

• 513 * 171 = 36423 mod 17947 = 15935

(Authentication Successful)

Standard RSA Process for Decryption:

• To decrypt c we could compute cd mod n directly

• m1 = 53372879 mod 17947 = 513. m2 = 13822 2879

mod 17947= 171
• Pretty difficult to do on your pocket calculator.

Now let's use the CRT method - notice how the

exponent and modulus values are much smaller and

manageable. This simple (but obviously insecure)

example should demonstrate how much easier it is

to break down the RSA calculation into smaller

ones.

Proposed Process:

• dP = e-1 mod (P-1) = 479-1 mod 136 = 23

• dQ = e-1 mod (Q-1) = 479-1 mod 130 = 19

• QInv = Q-1 mod P = 131-1 mod 137 = 114

• m1 = cdP mod P = 533723 mod 137 = 102

• m2 = cdQ mod Q = 533719 mod 131 = 120

• h = QInv*(m1 - m2) mod P = 114.(102-120+137)

mod 137 = 3

 [we add in an extra p here to keep the sum

positive]

• m = m2 + h*Q = 120 + 3.131 = 513.

• m1 = cdP mod P = 13822 23 mod 137 = 34

• m2 = cdQ mod Q = 13822 19 mod 131 = 40

• h = QInv*(m1 - m2) mod P = 114.(34-40+137) mod

137 = 1

 [we add in an extra p here to keep the sum

positive]

 m = m2 + h.Q = 40 + 1.131 = 171

Results:

The implementation is carried using python and the

database as MySQL.Here the exection is done taking

different file sizes with respect to the keyids .’e1’ and ‘e2’

are public keys that are generated using shor’s algorithm and

d is the private key.Below is shown the analysis of

encryption and decryption time. The average execution time

for encryption and decryption is generated using MYSQL

query which is shown below. It is clear that the process of

decryption is faster than encryption process. Hence

homomorphic encryption takes less time and it is faster and

secure.

Fig. 2 SQL Result

SELECT AVG(etime) FROM `user_ciphertext`;

avg(etime)

0.07077646255493164

SELECT AVG(dtime) FROM `user_ciphertext`;

avg(dtime)

0.025585246086120606

http://127.0.0.1/phpmyadmin/url.php?url=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fselect.html&token=1bb9349946e00099898610d7b815af0f
http://127.0.0.1/phpmyadmin/url.php?url=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fgroup-by-functions.html%23function_avg&token=1bb9349946e00099898610d7b815af0f
http://127.0.0.1/phpmyadmin/url.php?url=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fselect.html&token=1bb9349946e00099898610d7b815af0f
http://127.0.0.1/phpmyadmin/url.php?url=http%3A%2F%2Fdev.mysql.com%2Fdoc%2Frefman%2F5.5%2Fen%2Fgroup-by-functions.html%23function_avg&token=1bb9349946e00099898610d7b815af0f

4

Encryption Analysis

Fig. 3 Encryption Analysis

Decryption Analysis

 Fig. 4 Decryption Analysis

III. CONCLUSIONS

The Security of Data is a major concern in Cloud

Computing. Homomorphic Encryption is a new concept of

security which enables to provide the results of calculations

on encrypted data without knowing the raw entries on which

the calculation was carried out respecting the confidentiality

of data. From the analysis it is clear that the decryption

process is decreased than encryption process. Even though

computing of two exponentiations instead of one and there

are additional steps involved in doing CRT, overall, the

decryption would be much faster.

REFERENCES

1. Faster RSA Algorithm for Decryption Using

Chinese Remainder Theorem G.N. Shinde and H.S.

Fadewar , ICCES, vol.5, no.4, pp.255-261.

2. C. Lamprecht “Investigating the efficiency of

Cryptographic algorithm in Online

Transaction”ISN 1473-804X online, 1473-8031 I.J.

of Simulation Vol.7, No.2.

3. AlexanderMay, “Cryptanalysis of Unbalanced RSA

with Small CRT-Exponent”,

 CRYPTO 2002, LNCS 2442, pp 242-256, 2002.

4. JohannnesBlomer,Martin Otto, “a newCRT-RSA

Algorithm Secure Against Bellcore”, CC’03,

October 27-30,Washington, DC, USA.

5. Craig Gentry, A Fully Homomorphic Encryption

Scheme,

2009.http://crypto.stanford.edu/craig/craig-

thesis.pdf.

6. Understanding Homomorphic Encryption

http://en.wikipedia.org/wiki/Homomorphic_encrypt

ion.

7. Homomorphic Encryption Applied to the Cloud

Computing Security Maha TEBAA, Saïd EL

HAJJI, Abdellatif EL GHAZI.

8. Vic (J.R.) Winkler, ”Securing the Cloud, Cloud

Computer Security, Techniques and Tactics”,

Elsevier.

9. R. Rivest, A. Shamir, and L. Adleman. A method

for obtaining digital signatures and public key

cryptosystems. Communications of the ACM,

21(2):120-126, 1978.

10. A Fully Homomorphic Encryption Implementation

on Cloud Computing Shashank Bajpai and

Padmija Srivastava Cloud Computing Research

Team, Center for Development of Advanced

Computing [C-DAC], Hyderabad.

