
286

SQL Injection and Cross Site Scripting Prevention Using OWASP

Web Application Firewall

Robinson#, Memen Akbar#, Muhammad Arif Fadhly Ridha#

#Informatics Engineering Study Program, Politeknik Caltex Riau, Pekanbaru, Indonesia

e-mail: robeansonit@gmail.com, memen@pcr.ac.id, fadhly@pcr.ac.id

Abstract— Web Application or website are widely used to provide functionality that allows companies to build and maintain

relationships with their customers. The Information stored by web applications is often confidential and, if obtained by malicious

attackers. Its exposure could result in substantial losses for both consumers and companies. SQL Injection and Cross Site Scripting

are attacks that aiming web application database vulnerabilities. Its can allow malicious attackers to manipulate web server database

that can cause various data lost, information thieving, and inconsistent of data. Therefore, this research propose the Open Web

Application Security Project (OWASP) ModSecurity Core Rule Set which can help administrator securing the web servers. OWASP

operate by blocking IP Address which try to breaking the security rule, monitoring network traffic and preventing suspicious

network requesting from outside.

Keywords— web application, SQL Injeciton, Cross Site Scripting, Open Web Application Security Project.

I. INTRODUCTION

Web application or website are widely used to provide

functionality that allows companies to build and maintain

relationships with their customers. The information stored by

web applications is often confidential and, if obtained by

malicious attackers, its exposure could result in substantial

losses for both consumers and companies. (Mate Vibhakti,

2014). There are a lot of technique that commonly use by the

attackers such as SQL Injection, Cross Site Scripting, Brute

Force, Worm, deface, etc to intrude web application. By using

methods which are specifically aimed at exploiting potential

weak spots in the web applications, The attackers were not

easily detected by the System with sufficient accuracy.

SQL Injection and Cross Site Scripting (XSS) are attacks

that aiming web application database vulnerabilities. These

two kinds of attacks allow the malicious attackers to

manipulate web server database that can cause various data

lost, information thieving, and inconsistent of data.

Commonly administrator using a secondary database to

backup data or information from main database. When there

was an attack, the administrator will retrieve the database by

recovery it using the backup one. But this kind of plan can’t

prevent the data lost or information thieving. One of

information thieving damage example is the attackers can get

the username and password from database, and using it for

login to the website as an administrator. It will giving the

attackers the privillage of administrator to control the web

application.

Open Web Application Security Project (OWASP)

ModSecurity Core Rule Set (CRS) is a web application

firewall that can help administrator securing the web servers.

OWASP operate by blocking IP Address which try to

breaking the security rule, monitoring network traffic, and

preventing suspicious network requesting from outside.

ModSecurity works by gathers malicious payloads from

various web sources and consolidates them into a blacklist.

ModSecurity rules then use a fast pattern matching algorithm

to inspect outbound html for signs of this malicious code.

ModSecurity can then alert/block/clean the malicious code to

prevent infecting web application.

OWASP ModSecurity Core Rule Set is a solution for

covering web application vulnerabilities and securing web

application or website from malicious attacks that could result

in substantial losses for consumers and companies. OWASP

ModSecurity Core Rule Set also will be implemented to

Politeknik Caltex Riau web application especially for

academic and student sites.

II. LITERATURE REVIEW

A. Cross Site Scripting

Cross-site scripting (XSS) occurs when dynamically

generated web pages display input that is not properly

validated. This allows an attacker to embed malicious

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 2 (2018) NO 4

e-ISSN : 2549-9904

ISSN : 2549-9610

287

JavaScript code or script into the generated page and execute

the script on the machine of any user that views that site.

Cross-site scripting could potentially impact any site that

allows users to enter data. This vulnerability is commonly

seen on:

a) Search engines that echo the search keyword that was

entered

b) Error messages that echo the string that contained the

error

c) Forms that are filled out where values are later

presented to the user

d) Web message boards that allow users to post their own

messages.

An attacker who uses cross-site scripting successfully

might compromise confidential information, manipulate or

steal cookies, create requests that can be mistaken for those of

a valid user, or execute malicious code on the end-user

systems.

B. SQL Injection

SQL Injection is a vulnerability that results when you give

an attacker the ability to influence the Structured Query

Language (SQL) queries that an application passes to a back-

end database. By being able to influence what is passed to the

database, the attacker can leverage the syntax and capabilities

of SQL itself, as well as the power and flexibility of

supporting database functionality and operating system

functionality available to the database. Any code that accepts

input from an untrusted source and then uses that input to

form dynamic SQL statements could be vulnerable.

These are the classification of SQL injection types

according to Halfond, Viegas and Orso researches (Justin,

2009) .

1. Tautology

2. Logically incorrect queries

3. Union queries

4. Piggy-backed Querie

5. Stored Procedure

6. Blind Injection

7. Timing Attacks

Some impact if attackers success injecting SQL to web

servers :

- An attacker can use SQL Injection to bypass

authentication or even impersonate specific users.

- An SQL Injection vulnerability could allow the

complete disclosure of data residing on a database

server.

- An attacker could use SQL Injection to alter data

stored in a database. Altering data affects data

integrity and could cause repudiation issues.

- An attacker could use an SQL Injection vulnerability

to delete data from a database. Even if an appropriate

backup strategy is employed, deletion of data could

affect an application’s availability until the database

is restored.

- An attacker could use SQL Injection as the initial

vector in an attack of an internal network that sits

behind a firewall.

C. Web Application Firewall

To prevent malicious attacks, there are network appliances

that are added to the computer network such as Intrusion

Prevention System (IPS) and Intrusion Detection System

(IDS). Both IPS and IDS help monitor the network but are

only limited to detecting and notifying administrators about

the abnormal network behaviour and can still succumb to

complex attacks or attacks that may not have been recognized

by the system. IPS checks the signature of the attacks and

must rely on patterns to determine if there is an attack. IPS do

not have the ability to understand web application protocol

logic and also cannot fully distinguish if a request is normal or

malformed at the application layer. When IPS interrogate

traffic against signatures and anomalies, WAF interrogate the

behaviour of logic of what is request and returned.

The web application firewall is a type of firewall that

checks the data level of the packets to protect the application

layer of the OSI model. By checking the data portion of the

packets, more detailed information is revealed which is

referred to as the granularity of a packet. For example, inside

the HTTP header there would be http requests and inside http

request would be user agents, cookies and more. Now being

able to see this information, a more informed decision is now

made in regards to the security controls for specific packets

passed to the application.

The Web Application Firewall is installed as a running

service in the web server or system it needs to protect,

particularly the application layer level. Its main purpose is to

check all incoming HTTP traffic, then accepts and drops the

incoming HTTP traffic according to the rules that was set by

the network administrator. The administrator through a text

editor configures the rule-sets of the Web Application

Firewall. A manual is provided for the syntax and format of

the rules. The structure of the rules has the keywords “allow”

or “reject” as its basis for the decision, followed by the

different options of HTTP request headers and the value

which the administrator wants to be checked in the payload.

(Endraca, King, Nodalo, Maria, & Sabas, 2013).

D. OWASP ModSecurity Core Rule Set

Open Web Application Security Project or OWASP

ModSecurity Core Rule Set (CRS) is a set of generic attack

detection rules for use with ModSecurity or compatible web

application firewalls. The CRS aims to protect web

applications from a wide range of attacks, including the

OWASP Top Ten, with a minimum of false alerts. (Curphey

& Groves, 2006).

E. Attack Application

Attack Application that used in this research are:

1. SQLMap

Sqlmap is an open source command-line automatic SQL

injection tool that was released under the terms of the

GNU GPLv2 license by Bernardo Damele A. G. and

Daniele Bellucci.

2. BeeF XSS Framework

BeEF (Browser Exploitation Framwork) is a browser-

based exploit package that "hooks" one or more browsers

as beachheads for launching attacks. A user can be

hooked by accessing a customized URL and continue to

see typical web traffic, while an attacker has access to the

user's session. BeEF bypasses network security

appliances and host–based, antivirus applications by

288

targeting the vulnerabilities found in common browsers,

such as Internet Explorer and Firefox.

3. XSSer

Cross Site “Scripter” (aka X S Ser) is an open source

penetration testing tool that automates the process of

detecting, exploiting and reporting XSS vulnerabilities in

web-based applications.

F. Cpanel

CPanel is a web hosting control software that can be

accessed using any modern web browser. It is designed to

make the complex task of managing hosting account easy.

(Pedersen, 2006).

G. Simple Network Management Protocol

Simple Network Management Protocol (SNMP) is a

protocol used to monitor and control networks from elsewhere

(remote) (Syafrizal, 2005).

H. Research Method

Research method that been used in this final project are:

1. Literature Review

The collection of references in this research come from

the journals, books, e-books, articles which have

correlation with this final project topic.

2. Library Study

The collection of references in this research come from

the final project reports and papers which have

correlation with this final project topic.

3. Implementation

OWASP ModSecurity Web Application Firewall will

be implemented and configure on Politeknik Caltex

Riau web application server Cpanel.

4. Testing

 Testing activities will be done after web application

firewall already been implemented on web application

server by trying some several vulnerabilities testing.

5. Analyze and Conclusion

Analyzing and taking conclusion of the testing

activities results.

III. RESULT AND ANALYZE

A. Result of Implementing KVM Virtualization.

3 nodes that been installed on physic server will show in

the Figure 1 :

Fig. 1 KVM Virtualization

B. Result of CPanel Installation and Configuration

Cpanel have been installed on web1 server and web2

server. After the installation finished, client can access the

web server configuration through port 2083 for Cpanel

Interface and port 2087 for WHM interface. The detail

Interface will be show in the Figure 2 and Figure 3.

Fig. 2 WHM Index Interface (port 2087)

Fig. 3 Cpanel Index Interface (port 2083)

C. OWASP ModSecurity Configuration

On web1 server, ModSecurity will be set to active as show

in the Figure 3. So we can see the Hit List or web server Logs

if there is an attack as show in the Figure 4.

Fig. 4 ModSecurity Vendor Activation

Fig. 5 OWASP ModSecurity Hit List

Each number of the status on the Figure 5 has its own

definition which will be describe on the Figure 6

289

Fig. 6 Status Code Description

D. Attack Result

1. SQL Injection

After 15 times of attack testing for each kind of SQL

Injection using 3 differences on both of the web

servers, the result will be show in the table 1.

TABLE I

SQL INJECTION RESULT

Attack Result

OWASP NOOWASP

Tautology Failed Success

Logically Success Success

Union Queries Failed Success

Piggy-backed Failed MySQL countered

Stored Procedure Failed MySQL countered

Blind Injection Failed MySQL countered

Timing Attacks Failed MySQL countered

From Table 1, Failed status mean OWASP

ModSecurity success securing web server and detect

attacks log/ Hit List from those attacks. Success status

mean the attackers success injecting SQL query into

web server and MYSQL countered mean those SQL

query already been patched by the MySQL itself.

2. SQLmap exploitation

The second attacks testing was using SQLmap

exploitation tools which will scan the web server and

inject thousand of SQL query into web server.

Each attack was done 10 times (OWASP 10 times,

NOOWASP 10 times) on 3 kinds of Operating

System. The result will be show in the Table 2.

TABLE II

SQLMAP EXPLOITATION RESULT

The result show that OWASP successfully secure web

server from all SQLmap exploitations and detect the

attack on the Hit List as show in the Figure 7 and 8.

Fig. 7 SQLmap detect WAF

Fig. 8 ModSecurity Hit List

3. BeEF Exploitation

BeEF is an application for testing cross site scripting

stored type which will hook a target PC that will cause

the attacker can control the target PC.

The result of the attacks will be show in the table III.

TABLE III

SQLMAP EXPLOITATION RESULT

OS Result

OWASP NOOWASP

Kali Linux Success Success

Back Box Success Success

Parrot Success Success

The result show that OWASP failed to secure the web

server from XSS (Stored) which cause both of the

web server redirecting page into Hook Page that

prepared by the Attacker (BeEF) as show on the

Figure 9, 10 and 11.

OS Result

OWASP NOOWASP

Kali Linux Failed Success

Back Box Failed Success

Parrot Failed Success

290

Fig. 9 BeEF Hook Page

Fig. 10 BeEF fake form login into target PC

Fig. 11 BeEF got the username and password from target PC

4. XSSer Exploitation

XSSer is an application for scanning a site page and

try to injecting hundred of CSS query.

The result of this attack will be show in the table 4.

TABLE IV
XSSER EXPLOITATION RESULT

OS Result

OWASP NOOWASP

Kali Linux Failed but detected Failed

Back Box Failed but detected Failed

Parrot Failed but detected Failed

XSSer application failed to inject CSS query into both

of the web server. This may be caused by the Damn

Vulnerable Web Application sites isn’t show the .php

at the URL. XSSer on its work, need the .php at the

end of the URL link for injecting CSS script.

Even XSSer was failed to inject CSS Script, but

OWASP ModSecurity was success to detect all of

XSSer inject action and was display in Hit List as

show in the Figure 12 and 13.

Fig. 12 XSSer failed to inject 558 CSS Query into web server.

Fig. 13 OWASP ModSecurity Hit List detected XSSer Injection

5. Implementation

After several testing was done to both servers, now the

OWASP will be implement into pcr old mahasiswa

website. Several attacks also done for testing the

security.

The result of the attack testing after implementation

will be shown at table V, VI, and VII.

TABLE V

KALI LINUX OS ATTACK RESULT

 Kali Linux

Attack Type OWASP NOOWASP

SQL Injection Failed Failed

SQLmap Failed Failed

BeEF Failed Failed

XSSer Failed Failed

TABLE VI

BACKBOX OS ATTACK RESULT

 Back Box

Attack Type OWASP NOOWASP

SQL Injection Failed Failed

SQLmap Failed Failed

BeEF Failed Failed

XSSer Failed Failed

TABLE VII
PARROT OS ATTACK RESULT

 Parrot

Attack Type OWASP NOOWASP

SQL Injection Failed Failed

SQLmap Failed Failed

BeEF Failed Failed

XSSer Failed Failed

291

6. Performance Testing

An application call Web Stress were used to simulated

100 clients visit with the conditions below :

- Number of Users are 100 and Test run for 1 minutes.

- 2 Urls that tested : web1.robinsonta.pcr.ac.id &

web2.robinsonta.pcr.ac.id

Comparison of the Http Response, Cpu Load, Free

Memory and Free Disk of both servers will be display

in table VIII:

TABLE VIII
PERFORMANCE RESULT AFTER WEB STRESS SIMULATION

Attribute Average Result

OWASP NOOWASP

HTTP Response 5.028 Msec 4.046 Msec

CPU Load 0.148 / 5 Minutes 0,13 / 5 Minutes

Free Memory 17% / 171 Mbyte 12% / 121 Mbyte

Free Disk 2.399 MByte 2.162 Mbyte

The result from the table above that convert to chart

mode will be show in the Figure 14.

Fig. 14 Performance after 100 client testing.

7. Analyze

a. After testing 7 kinds of SQL Injection on web servers,

the result was some attack type already counter or

covered by the MySQL patching itself. (based on the

results reference to SQL Injection Attack Testing)

b. SQLmap Exploitation sometimes even already detected

there was a WAF/IDS/IPS its still force to inject dozens

of query that can cause OWASP Hit List flooding. (

based on the results reference to SQL Injection using

SQLmap Tool)

c. There are 3 type of Cross Site Scripting, DOM,

Reflected and Stored type. BeEF is a tool that used to

do cross site scripting stored type. Stored type cross site

scripting can’t been detected by OWASP ModSecurity

Web Application Firewall. This may be caused by

some web application actually save the information

directly into database without filtering the parameter

input by user. The solution is filter all the input

parameter from user and exception on input form field

during Web Application Development time. (based on

the results reference to XSS Testing using BeEF

Framework Tool).

d. XSSer only can be done for the web application which

has shown page extention such as .php, .html , etc . Its

can be cover during Web Application Development

time by hiding the page extention. (based on the results

reference to XSS using XSSer tool)

e. OWASP didn’t affect too much the HTTP Response

time, CpPU load, Free Memory and Free Disk. (based

on the results reference to Performance Comparison &

Performance Testing)

f. 100 Clients Performance testing only affect HTTP

response time and available memory cause of the

testing was only aim port 80 of the web application. (

based on the result reference to Performance Testing)

IV. CONCLUSION AND ADVICE

Conclusions of this Final Project are :

1. OWASP ModSecurity success 100% detect and secure

web application from SQL Injection after 15 times

testing using 3 difference Operating Systems.

2. OWASP ModSecurity failed to secure web application

from Cross Site Scripting Stored type that caused the

attacker successfully hook target PC.

3. OWASP ModSecurity success 100% detect and secure

web application from SQLmap exploitation tools

which was done using 3 differences Operating

Systems.

4. OWASP ModSecurity success 100% detect and secure

web application from XSSer exploitation tools which

was done using 3 differences Operating Systems.

5. Comparison result show that there wasn’t any big

affect that will influence web application performance

after using OWASP ModSecurity.

In current research, it still has many shortcomings due

to time constraints, budget cost and thoughts of the author.

Many things can be studied and developed more deeply.

Advice expected for future development includes:

1. Extend security coverage using OWASP

ModSecurity Web Application Firewall such as

Scanner Detection, DOS Protection, IP Reputation,

etc.

2. Extending Core Rule Set of OWASP ModSecurity

for securing some cross site scripting attacks that

didn’t provided by OWASP ModSecurity

3. Research on another WAF and make a comparison

of the result with OWASP ModSecurity.

V. ACKNOWLEDGEMENT

We would like to thank Causal Productions for permits to

use and revise the template provided by Causal Productions.

Original version of this template was provided by courtesy of

Causal Productions (www.causalproductions.com).

VI. REFERENCES

[1] BackBox | A Free Open Source Community Project. (n d). Retrieved

from Backbox: https://backbox.org

[2] Crhis,A. (2002). Advanced SQL Injection in SQL Server Application.
Software Insigth Security Research (NISR) Publication.

[3] Conallen, J. (1999). Building Web Application with UML. Addison

Wesley.

[4] Curphey, M., & Groves, D. (2006). Retrieved from Open Web

Application Security Project :

292

https://www.owasp.org/index.php/OWASP_Modsecurity_Core_Rule_

Set_Project

[5] Dharma, M. H. (2011). Simulasi dan Analisa Keamanan Jaringan

Menggunakan Honeypot.Pekanbaru: Politeknik Caltex Riau.

[6] Endraca, A, King, B., Nodalo, G., Maria, M. S., & Sabas, I.(2013).

Web Application Firewall (WAF). International Journal of e-

Educiation, e-Business, e-Management and e-Learning.

[7] Feri, S. (2014). Implementasi Firewall Aplikasi Web untuk Mencegah

SQL Injection Menggunakan Naxsi. Yogyakarta : Universitas Islam
Negeri Sunan Kalijaga.

[8] Justin, C. (2009). SQL Injection Attacks and Defense. Burlington:

Syngress Publishing, Inc.
[9] Kali Linux | Penetration Testing and Ethical Hacking Linux

Distribution. (n.d.). Retrieved from kali.org: http://kali.org

[10] Mate Vibhakti, T. M. (2014). Building A Secure & Anti-Theft Web
Application By Detecting and Preventing Owasp Critical Attacks.

International Journal of Engineering Research and Applications

(IJERA).

[11] Muniz Jospeh, L. A. (2013). Web Penetration Testing with Linux.

Birmingham, UK: Packt Publishing Ltd.

[12] Parrot Project. (n.d.). Retrieved from Parrot OS: www.parrotsec.org

[13] Pedersen, A. (2006). cPanel User Guide and Tutorial. Birmingham:

Packt Publishing.

[14] Pritchett Willie L, S. D. (2013). Kali Linux Cookbook.
Birmingham,UK: Packt Publishing Ltd.

[15] Randhe Kirit, M. V. (2012). Defense against SQL Injection and Cross

Site Scripting Vulnerabilities. International Journal of Science and

Research (IJSR).

[16] Rudi, R. (2011). Membangun Server yang Tahan Terhadap Serangan

Brute Force Menggunakan Fail2ban pada Debian 2.0 Squeeze.

Pekanbaru: Politeknik Caltex Riau.

[17] Shah Junaid Latief, K. A. (2014). Cross Site Scripting (XSS) : The

dark side of HTML. International Journal of Engineering and

Computer Science, 4066-4068.
[18] Spett, K. (2005). Cross-Site Scripting. SPI Dynamic, Inc.

[19] Syafrizal, M. (2005). Pengantar Jaringan Komputer. Yogyakarta:

ANDI
[20] Vogt Philipp, N. F. (n.d.). Cross-Site Scripting Prevention with

Dynamic Data Tainting and Static Analysis. Secure Systems Lab

Technical University Vienna.
[21] Wardana, H. K., Novan, S., & Handoko. (2009). Jurusan Teknik

Elektro Fakultas Teknik Universitas Kristen Satya Wacana. Aplikasi

Penggunaan Simple Network Management Protocol (SNMP) dalam

Jaringan, 93-108.

[22] Yulianingsih. (2017). Melindungi Aplikasi dari Serangan CrossSite

Scripting (XSS) dengan Metode MetaCharacter. FakultasTeknik dan

MIPA Universitas Indraprasta PGRI, Vol.03 , No.01.

